COMPUTING BASES FOR RINGS OF PERMUTATION-INVARIANT POLYNOMIALS

被引:46
|
作者
GOBEL, M
机构
[1] Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, 72076 Tübingen
关键词
D O I
10.1006/jsco.1995.1017
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let R be a commutative ring with 1, let R[X(1),..., X(n)] be the polynomial ring in X1,..., X(n) over R and let G be an arbitrary group of permutations of {X(1),..., X(n)}. The paper presents an algorithm for computing a small finite basis B of the R-algebra of G-invariant polynomials and a polynomial representation of an arbitrary G-invariant polynomial in R[X(1),..., X(n)] as a polynomial in the polynomials of the finite basis B. The algorithm works independently of the ground ring R, and the basis B contains only polynomials of total degree less than or equal to max{n, n(n - 1)/2}, independent of the size of the permutation group G.
引用
收藏
页码:285 / 291
页数:7
相关论文
共 50 条
  • [1] Permutation-invariant qudit codes from polynomials
    Ouyang, Yingkai
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 532 : 43 - 59
  • [2] Reduction of permutation-invariant polynomials -: A noncommutative case study
    Göbel, M
    Kredel, H
    INFORMATION AND COMPUTATION, 2002, 175 (02) : 158 - 170
  • [3] Permutation-invariant quantum codes
    Ouyang, Yingkai
    PHYSICAL REVIEW A, 2014, 90 (06):
  • [4] Permutation-invariant linear classifiers
    Lausser, Ludwig
    Szekely, Robin
    Kestler, Hans A.
    MACHINE LEARNING, 2024, 113 (10) : 7195 - 7221
  • [5] SAGBI BASES FOR RINGS OF INVARIANT LAURENT POLYNOMIALS
    Duncan, Alexander
    Reichstein, Zinovy
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (03) : 835 - 844
  • [6] Agnostic Learning in Permutation-Invariant Domains
    Wimmer, Karl
    ACM TRANSACTIONS ON ALGORITHMS, 2016, 12 (04)
  • [7] Regularised atomic body-ordered permutation-invariant polynomials for the construction of interatomic potentials
    van der Oord, Cas
    Dusson, Genevieve
    Csanyi, Gabor
    Ortner, Christoph
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2020, 1 (01):
  • [8] Path planning for permutation-invariant multirobot formations
    Kloder, Stephen
    Hutchinson, Seth
    IEEE TRANSACTIONS ON ROBOTICS, 2006, 22 (04) : 650 - 665
  • [9] On the number of special permutation-invariant orbits and terms
    Wilhelm-Schickard-Inst fuer, Informatik, Tuebingen, Germany
    Appl Algebra Eng Commun Comput, 6 (505-509):
  • [10] Permutation-Invariant Quantum Codes for Deletion Errors
    Shibayama, Taro
    Hagiwara, Manabu
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 1493 - 1498