ON GRAPHS WHOSE REDUCED ENERGY DOES NOT EXCEED 3

被引:0
|
作者
Lazic, Mirjana [1 ]
机构
[1] Prirodnomatemat Fak, Pp 60, Kragujevac 34000, Serbia
来源
关键词
D O I
10.2298/PIM0591053L
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In [3], Lepovi ' c described all connected graphs whose reduced energy, i. e., the sum of absolute values of all eigenvalues except the least and the largest ones, does not exceed 2.5. Here we describe all connected graphs whose reduced energy does not exceed 3.
引用
收藏
页码:53 / 60
页数:8
相关论文
共 50 条
  • [21] On unicyclic graphs whose second largest eigenvalue dose not exceed 1
    Xu, GH
    DISCRETE APPLIED MATHEMATICS, 2004, 136 (01) : 117 - 124
  • [22] On Trees Whose Second Largest Eigenvalue Does Not Exceed 1
    JINLONG SHU(Deportment of mathematic
    运筹学学报, 1998, (03) : 6 - 9
  • [23] ON MULTIPLICATIVE ARITHMETICAL FUNCTIONS WHOSE MODULUS DOES NOT EXCEED ONE
    DABOUSSI, H
    DELANGE, H
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1982, 26 (OCT): : 245 - 264
  • [24] On Quipus whose signless Laplacian index does not exceed 4.5
    Francesco Belardo
    Maurizio Brunetti
    Vilmar Trevisan
    Jianfeng Wang
    Journal of Algebraic Combinatorics, 2022, 55 : 1199 - 1223
  • [25] On Quipus whose signless Laplacian index does not exceed 4.5
    Belardo, Francesco
    Brunetti, Maurizio
    Trevisan, Vilmar
    Wang, Jianfeng
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 55 (04) : 1199 - 1223
  • [26] On graphs whose third largest distance eigenvalue dose not exceed-1
    Xue, Jie
    Liu, Ruifang
    Shu, Jinlong
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 402
  • [27] NORMAL DIGRAPHS WHOSE DEGREES DO NOT EXCEED 3
    ALEKSANDAR, T
    GRAPH THEORY, 1989, : 113 - 122
  • [28] The oriented bicyclic graphs whose skew-spectral radii do not exceed 2
    Guang-Hui Xu
    Shi-Cai Gong
    Journal of Inequalities and Applications, 2015
  • [29] The oriented bicyclic graphs whose skew-spectral radii do not exceed 2
    Xu, Guang-Hui
    Gong, Shi-Cai
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 11
  • [30] SOLUTION OF POISSON - BOLTZMANN EQUATION FOR SPHERE WHOSE RADIUS DOES NOT EXCEED DEBYE RADIUS
    SMIRNOV, VI
    SHAPIRO, BS
    DOKLADY AKADEMII NAUK SSSR, 1970, 194 (04): : 867 - &