The oriented bicyclic graphs whose skew-spectral radii do not exceed 2

被引:0
|
作者
Guang-Hui Xu
Shi-Cai Gong
机构
[1] Zhejiang A & F University,School of Science
关键词
oriented graph; skew-adjacency matrix; skew-spectral radius; 05C20; 05C50; 15A18; 15C35;
D O I
暂无
中图分类号
学科分类号
摘要
Let S(Gσ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S(G^{\sigma})$\end{document} be the skew-adjacency matrix of the oriented graph Gσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G^{\sigma}$\end{document} on order n and λ1,λ2,…,λn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda _{1},\lambda _{2},\ldots, \lambda _{n}$\end{document} be all eigenvalues of S(Gσ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S(G^{\sigma})$\end{document}. The skew-spectral radius ρs(Gσ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho_{s}(G^{\sigma})$\end{document} of Gσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G^{\sigma}$\end{document} is defined as max{|λ1|,|λ2|,…,|λn|}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\max\{|\lambda _{1}|,|\lambda _{2}|,\ldots,|\lambda _{n}|\}$\end{document}. In this paper, we determine all the oriented bicyclic graphs whose skew-spectral radii do not exceed 2.
引用
收藏
相关论文
共 47 条
  • [1] The oriented bicyclic graphs whose skew-spectral radii do not exceed 2
    Xu, Guang-Hui
    Gong, Shi-Cai
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 11
  • [2] On oriented graphs whose skew spectral radii do not exceed 2
    Xu, Guang-Hui
    Gong, Shi-Cai
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) : 2878 - 2887
  • [3] Oriented bicyclic graphs whose skew spectral radius does not exceed 2
    Ji, Jia-Hui
    Xu, Guang-Hui
    PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON MULTIMEDIA TECHNOLOGY (ICMT-13), 2013, 84 : 71 - 78
  • [4] Some inequalities on the skew-spectral radii of oriented graphs
    Xu, Guang-Hui
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [5] Some inequalities on the skew-spectral radii of oriented graphs
    Guang-Hui Xu
    Journal of Inequalities and Applications, 2012
  • [6] Oriented graphs whose skew spectral radius does not exceed 2
    Stanic, Zoran
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 603 : 359 - 367
  • [7] Ordering the oriented unicyclic graphs whose skew-spectral radius is bounded by 2
    Chen, Ping-Feng
    Xu, Guang-Hui
    Zhang, Li-Pu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [8] Ordering the oriented unicyclic graphs whose skew-spectral radius is bounded by 2
    Ping-Feng Chen
    Guang-Hui Xu
    Li-Pu Zhang
    Journal of Inequalities and Applications, 2013
  • [9] On the skew-spectral distribution of randomly oriented graphs
    Shang, Yilun
    ARS COMBINATORIA, 2018, 140 : 63 - 71
  • [10] Solution to a problem on skew spectral radii of oriented graphs
    Chen, Xiaolin
    Lian, Huishu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 524 : 61 - 67