The oriented bicyclic graphs whose skew-spectral radii do not exceed 2

被引:0
|
作者
Guang-Hui Xu
Shi-Cai Gong
机构
[1] Zhejiang A & F University,School of Science
关键词
oriented graph; skew-adjacency matrix; skew-spectral radius; 05C20; 05C50; 15A18; 15C35;
D O I
暂无
中图分类号
学科分类号
摘要
Let S(Gσ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S(G^{\sigma})$\end{document} be the skew-adjacency matrix of the oriented graph Gσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G^{\sigma}$\end{document} on order n and λ1,λ2,…,λn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda _{1},\lambda _{2},\ldots, \lambda _{n}$\end{document} be all eigenvalues of S(Gσ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S(G^{\sigma})$\end{document}. The skew-spectral radius ρs(Gσ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho_{s}(G^{\sigma})$\end{document} of Gσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G^{\sigma}$\end{document} is defined as max{|λ1|,|λ2|,…,|λn|}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\max\{|\lambda _{1}|,|\lambda _{2}|,\ldots,|\lambda _{n}|\}$\end{document}. In this paper, we determine all the oriented bicyclic graphs whose skew-spectral radii do not exceed 2.
引用
收藏
相关论文
共 47 条
  • [11] Lower bounds of the skew spectral radii and skew energy of oriented graphs
    Chen, Xiaolin
    Li, Xueliang
    Lian, Huishu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 479 : 91 - 105
  • [12] GRAPHS WHOSE Aα-SPECTRAL RADIUS DOES NOT EXCEED 2
    Wang, Jian Feng
    Wang, Jing
    Liu, Xiaogang
    Belardo, Francesco
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (02) : 677 - 690
  • [13] On the Laplacian spectral radii of bicyclic graphs
    He, Chang-Xiang
    Shao, Jia-Yu
    He, Jin-Ling
    DISCRETE MATHEMATICS, 2008, 308 (24) : 5981 - 5995
  • [14] Bicyclic oriented graphs with skew-rank 2 or 4
    Qu, Hui
    Yu, Guihai
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 258 : 182 - 191
  • [15] Some results on the spectral radii of bicyclic graphs
    Yuan, Xi-Ying
    Chen, Yan
    DISCRETE MATHEMATICS, 2010, 310 (21) : 2835 - 2840
  • [16] On Mixed Graphs Whose Hermitian Spectral Radii are at Most 2
    Bo-Jun Yuan
    Yi Wang
    Shi-Cai Gong
    Yun Qiao
    Graphs and Combinatorics, 2020, 36 : 1573 - 1584
  • [17] On Mixed Graphs Whose Hermitian Spectral Radii are at Most 2
    Yuan, Bo-Jun
    Wang, Yi
    Gong, Shi-Cai
    Qiao, Yun
    GRAPHS AND COMBINATORICS, 2020, 36 (05) : 1573 - 1584
  • [18] On bicyclic graphs whose second largest eigenvalue does not exceed 1
    Guo, SG
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 407 : 201 - 210
  • [19] The Signless Laplacian Spectral Radii and Spread of Bicyclic Graphs
    Fengmei SUN
    Ligong WANG
    Journal of Mathematical Research with Applications, 2014, 34 (02) : 127 - 136
  • [20] Bicyclic oriented graphs with skew-rank 6
    Lu, Yong
    Wang, Ligong
    Zhou, Qiannan
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 899 - 908