ON GRAPHS WHOSE REDUCED ENERGY DOES NOT EXCEED 3

被引:0
|
作者
Lazic, Mirjana [1 ]
机构
[1] Prirodnomatemat Fak, Pp 60, Kragujevac 34000, Serbia
来源
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD | 2005年 / 77卷 / 91期
关键词
D O I
10.2298/PIM0591053L
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In [3], Lepovi ' c described all connected graphs whose reduced energy, i. e., the sum of absolute values of all eigenvalues except the least and the largest ones, does not exceed 2.5. Here we describe all connected graphs whose reduced energy does not exceed 3.
引用
收藏
页码:53 / 60
页数:8
相关论文
共 50 条
  • [31] On graphs whose energy exceeds the number of vertices
    Gutman, Ivan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (11-12) : 2670 - 2677
  • [32] On Triregular Graphs whose Energy Exceeds the Number of Vertices
    Li, Shasha
    Li, Xueliang
    Ma, Hongping
    Gutman, Ivan
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2010, 64 (01) : 201 - 216
  • [33] TRIREGULAR GRAPHS WHOSE ENERGY EXCEEDS THE NUMBER OF VERTICES
    Majstorovic, Snjezana
    Klobucar, Antoaneta
    Gutman, Ivan
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2009, 62 (03) : 509 - 524
  • [34] MORE GRAPHS WHOSE ENERGY EXCEEDS THE NUMBER OF VERTICES
    Adiga, Chandrashekar
    Khoshbakht, Zeynab
    Gutman, Ivan
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2007, 2 (02): : 57 - 62
  • [35] On Biregular Graphs whose Energy Exceeds the Number of Vertices
    Xu, Liqiong
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2011, 66 (03) : 959 - 970
  • [36] BIREGULAR GRAPHS WHOSE ENERGY EXCEEDS THE NUMBER OF VERTICES
    Gutman, Ivan
    Klobucar, Antoaneta
    Majstorovic, Snjezana
    Adiga, Chandrashekar
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2009, 62 (03) : 499 - 508
  • [38] One example of a continuous nowhere differentiable function whose modulus of continuity does not exceed a given one
    Rubinshtein, Aleksandr Iosifovich
    Telyakovskii, Dmitrii Sergeevich
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2024, 30 (04):
  • [39] Tricyclic biregular graphs whose energy exceeds the number of vertices
    Majstorovic, Snjezana
    Gutman, Ivan
    Klobucar, Antoaneta
    MATHEMATICAL COMMUNICATIONS, 2010, 15 (01) : 213 - 222
  • [40] Groups Whose Element Orders do not Exceed 6
    D. V. Lytkina
    V. D. Mazurov
    A. S. Mamontov
    E. Jabara
    Algebra and Logic, 2014, 53 : 365 - 376