A DEGREE CHARACTERIZATION OF PANCYCLICITY

被引:5
|
作者
ALDRED, REL
HOLTON, DA
MIN, ZK
机构
[1] UNIV OTAGO,DEPT MATH & STAT,DUNEDIN,NEW ZEALAND
[2] NANJING UNIV,DEPT MATH,NANJING,PEOPLES R CHINA
关键词
D O I
10.1016/0012-365X(92)00464-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G of order n is said to be in the class O(n - 1) if deg(u) + deg(v) greater-than-or-equal-to n - 1 for every pair of nonadjacent vertices u, v is-an-element-of V(G). We characterise the graphs in O(n - 1) which are pancyclic.
引用
收藏
页码:23 / 29
页数:7
相关论文
共 50 条
  • [31] Forbidden subgraphs for chorded pancyclicity
    Cream, Megan
    Gould, Ronald J.
    Larsen, Victor
    DISCRETE MATHEMATICS, 2017, 340 (12) : 2878 - 2888
  • [32] Vertex-Pancyclicity of Hypertournaments
    Yang, Jed
    JOURNAL OF GRAPH THEORY, 2010, 63 (04) : 338 - 348
  • [33] Pancyclicity of recursive circulant graphs
    Araki, T
    Shibata, Y
    INFORMATION PROCESSING LETTERS, 2002, 81 (04) : 187 - 190
  • [34] Pancyclicity of strong products of graphs
    Král, D
    Maxová, J
    Podbrdsky, P
    Sámal, R
    GRAPHS AND COMBINATORICS, 2004, 20 (01) : 91 - 104
  • [35] Notes on vertex pancyclicity of graphs
    Guo, Qiaoping
    Li, Shengjia
    Xu, Gaokui
    Guo, Yubao
    INFORMATION PROCESSING LETTERS, 2013, 113 (19-21) : 710 - 713
  • [36] Pancyclicity of Strong Products of Graphs
    Daniel Král
    Jana Maxová
    Pavel Podbrdský
    Robert Šámal
    Graphs and Combinatorics, 2004, 20 : 91 - 104
  • [37] Rainbow Pancyclicity in Graph Systems
    Cheng, Yangyang
    Wang, Guanghui
    Zhao, Yi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (03):
  • [39] Pancyclicity of Mobius cubes with faulty nodes
    Yang, XF
    Megson, GM
    Evans, DJ
    MICROPROCESSORS AND MICROSYSTEMS, 2006, 30 (03) : 165 - 172
  • [40] Pancyclicity and extendability in strong products
    Ramachandran, S
    Parvathy, R
    JOURNAL OF GRAPH THEORY, 1996, 22 (01) : 75 - 82