Forbidden subgraphs for chorded pancyclicity

被引:3
|
作者
Cream, Megan [1 ]
Gould, Ronald J. [2 ]
Larsen, Victor [3 ]
机构
[1] Spelman Coll, Dept Math, 350 Spelman Lane SW, Atlanta, GA 30314 USA
[2] Emory Univ, Dept Math & Comp Sci, 400 Dowman Dr, Atlanta, GA 30322 USA
[3] Kennesaw State Univ, Dept Math, 1100 S Marietta Pkwy, Marietta, GA 30060 USA
关键词
Pancyclic; Chorded cycle; Forbidden subgraph; Hamiltonian; HAMILTONIAN PROPERTIES;
D O I
10.1016/j.disc.2017.07.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We call a graph G pancyclic if it contains at least one cycle of every possible length m, for 3 <= m <= vertical bar V(G)vertical bar. In this paper, we define a new property called chorded pancyclicity. We explore forbidden subgraphs in claw-free graphs sufficient to imply that the graph contains at least one chorded cycle of every possible length 4, 5, ... , vertical bar V(G)vertical bar. In particular, certain paths and triangles with pendant paths are forbidden. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:2878 / 2888
页数:11
相关论文
共 50 条
  • [1] Toughness, Forbidden Subgraphs and Pancyclicity
    Zheng, Wei
    Broersma, Hajo
    Wang, Ligong
    GRAPHS AND COMBINATORICS, 2021, 37 (03) : 839 - 866
  • [2] Toughness, Forbidden Subgraphs and Pancyclicity
    Wei Zheng
    Hajo Broersma
    Ligong Wang
    Graphs and Combinatorics, 2021, 37 : 839 - 866
  • [3] Chorded pancyclicity with distance two degree condition and doubly chorded pancyclicity
    Cream, Megan
    Gould, Ronald j.
    Hirohata, Kazuhide
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2024, 88 : 97 - 108
  • [4] Chorded Pancyclicity in k-Partite Graphs
    Ferrero, Daniela
    Lesniak, Linda
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1565 - 1580
  • [5] Chorded Pancyclicity in k-Partite Graphs
    Daniela Ferrero
    Linda Lesniak
    Graphs and Combinatorics, 2018, 34 : 1565 - 1580
  • [6] Characterizing forbidden subgraphs that imply pancyclicity in 4-connected, claw-free graphs
    Carraher, James
    Ferrara, Michael
    Morris, Timothy
    Santana, Michael
    DISCRETE MATHEMATICS, 2021, 344 (10)
  • [7] Forbidden subgraphs and forbidden substructures
    Cherlin, G
    Shi, ND
    JOURNAL OF SYMBOLIC LOGIC, 2001, 66 (03) : 1342 - 1352
  • [8] FORBIDDEN PAIRS AND (k, m)-PANCYCLICITY
    Crane, Charles Brian
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (03) : 649 - 663
  • [9] FORBIDDEN AND UNAVOIDABLE SUBGRAPHS
    GERNERT, D
    ARS COMBINATORIA, 1989, 27 : 165 - 176
  • [10] Splits with forbidden subgraphs
    Axenovich, Maria
    Martin, Ryan R.
    DISCRETE MATHEMATICS, 2022, 345 (02)