A DEGREE CHARACTERIZATION OF PANCYCLICITY

被引:5
|
作者
ALDRED, REL
HOLTON, DA
MIN, ZK
机构
[1] UNIV OTAGO,DEPT MATH & STAT,DUNEDIN,NEW ZEALAND
[2] NANJING UNIV,DEPT MATH,NANJING,PEOPLES R CHINA
关键词
D O I
10.1016/0012-365X(92)00464-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G of order n is said to be in the class O(n - 1) if deg(u) + deg(v) greater-than-or-equal-to n - 1 for every pair of nonadjacent vertices u, v is-an-element-of V(G). We characterise the graphs in O(n - 1) which are pancyclic.
引用
收藏
页码:23 / 29
页数:7
相关论文
共 50 条
  • [11] Pancyclicity of the prism
    Goddard, W
    Henning, MA
    DISCRETE MATHEMATICS, 2001, 234 (1-3) : 139 - 142
  • [12] Pancyclicity of pyramid networks
    Wu, RY
    Duh, DR
    PDPTA '04: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS 1-3, 2004, : 1523 - 1526
  • [13] Node-pancyclicity and edge-pancyclicity of crossed cubes
    Fan, JX
    Lin, XL
    Jia, XH
    INFORMATION PROCESSING LETTERS, 2005, 93 (03) : 133 - 138
  • [14] On the Pancyclicity of Lexicographic Products
    Tomáš Kaiser
    Matthias Kriesell
    Graphs and Combinatorics, 2006, 22 : 51 - 58
  • [15] Geodesic pancyclicity and balanced pancyclicity of the generalized base-b hypercube
    Fang, Jywe-Fei
    Huang, Chien-Hung
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (4-5) : 548 - 559
  • [16] Pancyclicity in switching classes
    Ehrenfeucht, A
    Hage, J
    Harju, T
    Rozenberg, G
    INFORMATION PROCESSING LETTERS, 2000, 73 (5-6) : 153 - 156
  • [17] Pancyclicity of Mobius cubes
    Huang, WT
    Chen, WK
    Chen, CH
    NINTH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, PROCEEDINGS, 2002, : 591 - 596
  • [18] Proof of the Caccetta-Haggkvist conjecture for in-tournaments with respect to the minimum out-degree, and pancyclicity
    Lichiardopol, Nicolas
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2013, 57 : 313 - 320
  • [19] PANCYCLICITY IN LINE GRAPHS
    李相文
    ActaMathematicaScientia, 1998, (02) : 212 - 220
  • [20] On the pancyclicity of lexicographic products
    Kaiser, T
    Kriesell, M
    GRAPHS AND COMBINATORICS, 2006, 22 (01) : 51 - 58