PANCYCLICITY IN LINE GRAPHS

被引:0
|
作者
李相文
机构
关键词
Line graph; Hamilton cycle; pancyclicity;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
This paper shows that if G is a connected graph of order n such that σ2(G)>2(-1) and L(G) is hamiltonian, then, for n≥43, L(G) is pancyclic. Using the result of Veldman[8] this result settles the conjecture of Benhocine, et.al[1]: Let G be a connected almost bridgeless graph of order n such that If n is sufficintly large,L(G) is pancyclic.
引用
收藏
页码:212 / 220
页数:9
相关论文
共 50 条
  • [1] Pancyclicity in line graphs
    Li, XW
    ACTA MATHEMATICA SCIENTIA, 1998, 18 (02) : 212 - 220
  • [2] PANCYCLICITY OF HAMILTONIAN LINE GRAPHS
    VANBLANKEN, E
    VANDENHEUVEL, J
    VELDMAN, HJ
    DISCRETE MATHEMATICS, 1995, 138 (1-3) : 379 - 385
  • [3] SUBGRAPH CONDITIONS FOR DOMINATING CIRCUITS IN GRAPHS AND PANCYCLICITY OF LINE GRAPHS
    BROERSMA, HJ
    ARS COMBINATORIA, 1987, 23 : 5 - 12
  • [4] Pancyclicity of connected circulant graphs
    Bogdanowicz, ZR
    JOURNAL OF GRAPH THEORY, 1996, 22 (02) : 167 - 174
  • [5] Pancyclicity of recursive circulant graphs
    Araki, T
    Shibata, Y
    INFORMATION PROCESSING LETTERS, 2002, 84 (03) : 173 - 173
  • [6] Pancyclicity of recursive circulant graphs
    Araki, T
    Shibata, Y
    INFORMATION PROCESSING LETTERS, 2002, 81 (04) : 187 - 190
  • [7] Pancyclicity of strong products of graphs
    Král, D
    Maxová, J
    Podbrdsky, P
    Sámal, R
    GRAPHS AND COMBINATORICS, 2004, 20 (01) : 91 - 104
  • [8] Notes on vertex pancyclicity of graphs
    Guo, Qiaoping
    Li, Shengjia
    Xu, Gaokui
    Guo, Yubao
    INFORMATION PROCESSING LETTERS, 2013, 113 (19-21) : 710 - 713
  • [9] Pancyclicity of Strong Products of Graphs
    Daniel Král
    Jana Maxová
    Pavel Podbrdský
    Robert Šámal
    Graphs and Combinatorics, 2004, 20 : 91 - 104
  • [10] Edge-pancyclicity of coupled graphs
    Lih, KW
    Song, ZM
    Wang, WF
    Zhang, KM
    DISCRETE APPLIED MATHEMATICS, 2002, 119 (03) : 259 - 264