PANCYCLICITY IN LINE GRAPHS

被引:0
|
作者
李相文
机构
关键词
Line graph; Hamilton cycle; pancyclicity;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
This paper shows that if G is a connected graph of order n such that σ2(G)>2(-1) and L(G) is hamiltonian, then, for n≥43, L(G) is pancyclic. Using the result of Veldman[8] this result settles the conjecture of Benhocine, et.al[1]: Let G be a connected almost bridgeless graph of order n such that If n is sufficintly large,L(G) is pancyclic.
引用
收藏
页码:212 / 220
页数:9
相关论文
共 50 条
  • [41] Vertex Pancyclicity of Quadrangularly Connected Claw-free Graphs
    Xiaodong Chen
    MingChu Li
    Xin Ma
    Graphs and Combinatorics, 2015, 31 : 2125 - 2136
  • [42] Pancyclicity of Generalized Prisms over Specific Types of Skirted Graphs
    Muaengwaeng, Artchariya
    Boonklurb, Ratinan
    Singhun, Sirirat
    THAI JOURNAL OF MATHEMATICS, 2022, : 53 - 63
  • [43] Vertex-pancyclicity of edge-face-total graphs
    Wang, WF
    DISCRETE APPLIED MATHEMATICS, 2004, 143 (1-3) : 364 - 367
  • [44] Rainbow Pancyclicity and Panconnectivity of Strongly Edge-Colored Graphs
    Wang, Yi
    Zhao, Peixue
    Huang, Fei
    GRAPHS AND COMBINATORICS, 2025, 41 (01)
  • [45] Weak-vertex-pancyclicity of (n, k)-star graphs
    Chen, Ying-You
    Duh, Dyi-Rong
    Ye, Tai-Ling
    Fu, Jung-Sheng
    THEORETICAL COMPUTER SCIENCE, 2008, 396 (1-3) : 191 - 199
  • [46] Pancyclicity of the n-Generalized Prism over Skirted Graphs
    Muaengwaeng, Artchariya
    Boonklurb, Ratinan
    Singhun, Sirirat
    SYMMETRY-BASEL, 2022, 14 (04):
  • [47] Pancyclicity of 3-connected graphs: Pairs of forbibben subgraphs
    Gould, RJ
    Luczak, T
    Pfender, F
    JOURNAL OF GRAPH THEORY, 2004, 47 (03) : 183 - 202
  • [48] Vertex Pancyclicity of Quadrangularly Connected Claw-free Graphs
    Chen, Xiaodong
    Li, MingChu
    Ma, Xin
    GRAPHS AND COMBINATORICS, 2015, 31 (06) : 2125 - 2136
  • [49] Edge-pancyclicity and path-embeddability of bijective connection graphs
    Fan, Jianxi
    Jia, Xiaohua
    INFORMATION SCIENCES, 2008, 178 (02) : 340 - 351
  • [50] A TRIPLE OF HEAVY SUBGRAPHS ENSURING PANCYCLICITY OF 2-CONNECTED GRAPHS
    Widel, Wojciech
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (02) : 477 - 500