Hermite-Hadamard-Fejer Type Inequalities for Quasi-Geometrically Convex Functions via Fractional Integrals

被引:19
|
作者
Iscan, Imdat [1 ]
Kunt, Mehmet [2 ]
机构
[1] Giresun Univ, Fac Sci & Arts, Dept Math, TR-28200 Giresun, Turkey
[2] Karadeniz Tech Univ, Dept Math, Fac Sci, TR-61080 Trabzon, Turkey
关键词
D O I
10.1155/2016/6523041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some Hermite-Hadamard-Fejer type integral inequalities for quasi-geometrically convex functions in fractional integral forms have been obtained.
引用
收藏
页数:7
相关论文
共 50 条
  • [42] Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals
    Iscan, Imdat
    Wu, Shanhe
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 : 237 - 244
  • [43] Properties of h-convex functions related to the Hermite-Hadamard-Fejer inequalities
    Bombardelli, Mea
    Varosanec, Sanja
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (09) : 1869 - 1877
  • [44] Hermite-Hadamard Type Inequalities For Quasi-Convex Functions Via New Fractional Conformable Integrals
    Set, Erhan
    Gozpinar, Abdurrahman
    Demirci, Filiz
    1ST INTERNATIONAL CONFERENCE ON MATHEMATICAL AND RELATED SCIENCES (ICMRS 2018), 2018, 1991
  • [45] A Generalization of Hermite-Hadamard-Fejer Type Inequalities for the p-Convex Function via α-Generator
    Unluyol, Erdal
    Erdas, Yeter
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [46] Inequalities of Hermite-Hadamard-Fejer type for convex functions and convex functions on the co-ordinates in a rectangle from the plane
    Tseng, Kuei-Lin
    Pecaric, J.
    Hwang, Shiow-Ru
    Chen, Yi-Liang
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (03): : 703 - 717
  • [47] ON FEJER-HERMITE-HADAMARD INEQUALITIES FOR FUNCTIONS INVOLVING FRACTIONAL INTEGRALS
    Mehmood, Sikander
    Zafar, Fiza
    Furkan, Hasan
    Yasmin, Nusrat
    Akdemir, Ahmet Ocak
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (01) : 279 - 299
  • [48] Hermite-Hadamard-Fejer type inequalities via fractional integral of a function concerning another function
    Baleanu, Dumitru
    Samraiz, Muhammad
    Perveen, Zahida
    Iqbal, Sajid
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    AIMS MATHEMATICS, 2021, 6 (05): : 4280 - 4295
  • [49] Some Hermite–Hadamard type inequalities for geometrically quasi-convex functions
    FENG QI
    BO-YAN XI
    Proceedings - Mathematical Sciences, 2014, 124 : 333 - 342
  • [50] ON THE OHLIN LEMMA FOR HERMITE-HADAMARD-FEJER TYPE INEQUALITIES
    Rajba, Teresa
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (02): : 557 - 571