Hermite-Hadamard-Fejer Type Inequalities for Quasi-Geometrically Convex Functions via Fractional Integrals

被引:19
|
作者
Iscan, Imdat [1 ]
Kunt, Mehmet [2 ]
机构
[1] Giresun Univ, Fac Sci & Arts, Dept Math, TR-28200 Giresun, Turkey
[2] Karadeniz Tech Univ, Dept Math, Fac Sci, TR-61080 Trabzon, Turkey
关键词
D O I
10.1155/2016/6523041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some Hermite-Hadamard-Fejer type integral inequalities for quasi-geometrically convex functions in fractional integral forms have been obtained.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] ON NEW HERMITE-HADAMARD-FEJER TYPE INEQUALITIES FOR HARMONICALLY QUASI CONVEX FUNCTIONS
    Turhan, Sercan
    Iscan, Imdat
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 734 - 749
  • [12] Hermite-Hadamard, Hermite-Hadamard-Fejer, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals
    Ahmad, Bashir
    Alsaedi, Ahmed
    Kirane, Mokhtar
    Torebek, Berikbol T.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 353 : 120 - 129
  • [13] Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals
    Chen, Hua
    Katugampola, Udita N.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) : 1274 - 1291
  • [14] Hermite-Hadamard-Fejer Inequality Related to Generalized Convex Functions via Fractional Integrals
    Delavar, M. Rostamian
    Aslani, S. Mohammadi
    De La Sen, M.
    JOURNAL OF MATHEMATICS, 2018, 2018
  • [15] Hermite-Hadamard-Fejer Type Inequalities for s-Convex Function in the Second Sense via Fractional Integrals
    Set, Erhan
    Iscan, Imdat
    Kara, Hasan Huseyin
    FILOMAT, 2016, 30 (12) : 3131 - 3138
  • [16] Hermite–Hadamard and Hermite–Hadamard–Fejer type inequalities for p-convex functions via conformable fractional integrals
    Naila Mehreen
    Matloob Anwar
    Journal of Inequalities and Applications, 2020
  • [17] New Hermite-Hadamard-Fejer type inequalities for (η1, η2)-convex functions via fractional calculus
    Mehmood, Sikander
    Zafar, Fiza
    Yasmin, Nusrat
    SCIENCEASIA, 2020, 46 (01): : 102 - 108
  • [18] On Quantum Hermite-Hadamard-Fejer Type Integral Inequalities via Uniformly Convex Functions
    Barsam, Hasan
    Mirzadeh, Somayeh
    Sayyari, Yamin
    Ciurdariu, Loredana
    FRACTAL AND FRACTIONAL, 2025, 9 (02)
  • [19] Hermite-Hadamard-Fejer inequalities for generalized conformable fractional integrals
    Mehmood, Sikander
    Zafar, Fiza
    Yasmin, Nusrat
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (05) : 3746 - 3758
  • [20] Weighted Midpoint Hermite-Hadamard-Fejer Type Inequalities in Fractional Calculus for Harmonically Convex Functions
    Kalsoom, Humaira
    Vivas-Cortez, Miguel
    Amer Latif, Muhammad
    Ahmad, Hijaz
    FRACTAL AND FRACTIONAL, 2021, 5 (04)