Hermite-Hadamard-Fejer Type Inequalities for Quasi-Geometrically Convex Functions via Fractional Integrals

被引:19
|
作者
Iscan, Imdat [1 ]
Kunt, Mehmet [2 ]
机构
[1] Giresun Univ, Fac Sci & Arts, Dept Math, TR-28200 Giresun, Turkey
[2] Karadeniz Tech Univ, Dept Math, Fac Sci, TR-61080 Trabzon, Turkey
关键词
D O I
10.1155/2016/6523041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some Hermite-Hadamard-Fejer type integral inequalities for quasi-geometrically convex functions in fractional integral forms have been obtained.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Generalized Inequalities of the type of Hermite-Hadamard-Fejer with Quasi-Convex Functions by way of k-Fractional Derivatives
    Ali, A.
    Gulshan, G.
    Hussain, R.
    Latif, A.
    Muddassar, M.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (07) : 1208 - 1219
  • [22] New general integral inequalities for quasi-geometrically convex functions via fractional integrals
    Iscan, Imdat
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [23] Conformable integral version of Hermite-Hadamard-Fejer inequalities via η-convex functions
    Khurshid, Yousaf
    Khan, Muhammad Adil
    Chu, Yu-Ming
    AIMS MATHEMATICS, 2020, 5 (05): : 5106 - 5120
  • [24] New general integral inequalities for quasi-geometrically convex functions via fractional integrals
    İmdat İşcan
    Journal of Inequalities and Applications, 2013
  • [25] HERMITE-HADAMARD-FEJER INEQUALITIES FOR DOUBLE INTEGRALS
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2021, 70 (01): : 100 - 116
  • [26] Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for p-convex functions via new fractional conformable integral operators
    Mehreen, Naila
    Anwar, Matloob
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2019, 19 (04): : 230 - 240
  • [27] New Hermite-Hadamard-Fejer type inequalities for GA-convex functions
    Maden, Selahattin
    Turhan, Sercan
    Iscan, Imdat
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [28] Hermite-Hadamard-Fejer type inequalities
    Yaldiz, Hatice
    Sarikaya, Mehmet Zeki
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (7-8) : 1547 - 1561
  • [29] Hermite-Hadamard-Fejer Type Inequalities for (k, h)-Convex Function via Riemann-Liouville and Conformable Fractional Integrals
    Set, Erhan
    Karaoglan, Ali
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES (ICANAS 2017), 2017, 1833
  • [30] Some weighted Hadamard and Ostrowski-type fractional inequalities for quasi-geometrically convex functions
    Kalsoom, Humaira
    Latif, Muhammad Amer
    FILOMAT, 2023, 37 (18) : 5921 - 5942