A note on the k-tuple total domination number of a graph

被引:2
|
作者
Kazenti, Adel P. [1 ]
机构
[1] Univ Mohaghegh Ardabil, Dept Math, POB 5619911367, Ardebil, Iran
来源
TBILISI MATHEMATICAL JOURNAL | 2015年 / 8卷 / 02期
关键词
k-tuple domination number; k-tuple total domination number; k-transversal; open neighborhood hypergraph; expectation;
D O I
10.1515/tmj-2015-0027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every positive integer k and every graph G = (V, E) with minimum degree at least vertex set S is a k-tuple total domuinatin set (restp. k-tuple dominating set) of G, if for every vertex v is an element of V, vertical bar N-G(upsilon) boolean AND S vertical bar >= k, (resp. vertical bar N-G[upsilon] boolean AND S vertical bar >= k). The k-tuple total domination number 1,,t(C1) (resp. k-tuple domination number gamma xk,t (G) (resp. k-tuple domination number gamma xk (G) is the minimum cardinality of a k-tuple total dominating set (resp. k-tuple dominating set (resp. k-tuple dominating set ) of G. In this paper, we first prove that if to is a positive integer, then for which graphs G, gamma(xk,t)(G) = m or gamma(xk)(G) = m and give a necessary and sufficient condition for gamma(xk,t)(G) = gamma(x(k+1))(G). Then we show tint if C is a graph of order with delta(G) >= k + 1 >= 2, then gamma(xk,t)(G) has the lower bound 2 gamma(x(k+1))(G) - n, and characterize graphs that equality holds for them. Finally we present two upper bounds for the k-tuple total domination number of a graph in terms of its order, minimum degree and k.
引用
收藏
页码:281 / 286
页数:6
相关论文
共 50 条
  • [21] k-tuple domination in graphs
    Liao, CS
    Chang, GJ
    INFORMATION PROCESSING LETTERS, 2003, 87 (01) : 45 - 50
  • [22] k-Tuple Total Domination in Supergeneralized Petersen Graphs
    Kazemi, Adel P.
    Pahlaysay, Behnaz
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2011, 2 (01): : 29 - 38
  • [23] BOUNDS ON THE k-TUPLE DOMATIC NUMBER OF A GRAPH
    Volkmann, Lutz
    MATHEMATICA SLOVACA, 2011, 61 (06) : 851 - 858
  • [24] Cartesian Product Graphs and k-Tuple Total Domination
    Kazemi, Adel P.
    Pahlavsay, Behnaz
    Stones, Rebecca J.
    FILOMAT, 2018, 32 (19) : 6713 - 6731
  • [25] k-TUPLE TOTAL RESTRAINED DOMINATION/DOMATIC IN GRAPHS
    Kazemi, A. P.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2014, 40 (03): : 751 - 763
  • [26] Algorithmic aspects of k-tuple total domination in graphs
    Pradhan, D.
    INFORMATION PROCESSING LETTERS, 2012, 112 (21) : 816 - 822
  • [27] k-tuple total domination in cross products of graphs
    Henning, Michael A.
    Kazemi, Adel P.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 24 (03) : 339 - 346
  • [28] On the complexity of {k}-domination and k-tuple domination in graphs
    Argiroffo, Gabriela
    Leoni, Valeria
    Torres, Pablo
    INFORMATION PROCESSING LETTERS, 2015, 115 (6-8) : 556 - 561
  • [29] Some new results on the k-tuple domination number of graphs
    Cabrera Martinez, Abel
    RAIRO-OPERATIONS RESEARCH, 2022, 56 (05) : 3491 - 3497
  • [30] On k-tuple domination of random graphs
    Wang Bin
    Xiang Kai-Nan
    APPLIED MATHEMATICS LETTERS, 2009, 22 (10) : 1513 - 1517