A note on the k-tuple total domination number of a graph

被引:2
|
作者
Kazenti, Adel P. [1 ]
机构
[1] Univ Mohaghegh Ardabil, Dept Math, POB 5619911367, Ardebil, Iran
来源
TBILISI MATHEMATICAL JOURNAL | 2015年 / 8卷 / 02期
关键词
k-tuple domination number; k-tuple total domination number; k-transversal; open neighborhood hypergraph; expectation;
D O I
10.1515/tmj-2015-0027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every positive integer k and every graph G = (V, E) with minimum degree at least vertex set S is a k-tuple total domuinatin set (restp. k-tuple dominating set) of G, if for every vertex v is an element of V, vertical bar N-G(upsilon) boolean AND S vertical bar >= k, (resp. vertical bar N-G[upsilon] boolean AND S vertical bar >= k). The k-tuple total domination number 1,,t(C1) (resp. k-tuple domination number gamma xk,t (G) (resp. k-tuple domination number gamma xk (G) is the minimum cardinality of a k-tuple total dominating set (resp. k-tuple dominating set (resp. k-tuple dominating set ) of G. In this paper, we first prove that if to is a positive integer, then for which graphs G, gamma(xk,t)(G) = m or gamma(xk)(G) = m and give a necessary and sufficient condition for gamma(xk,t)(G) = gamma(x(k+1))(G). Then we show tint if C is a graph of order with delta(G) >= k + 1 >= 2, then gamma(xk,t)(G) has the lower bound 2 gamma(x(k+1))(G) - n, and characterize graphs that equality holds for them. Finally we present two upper bounds for the k-tuple total domination number of a graph in terms of its order, minimum degree and k.
引用
收藏
页码:281 / 286
页数:6
相关论文
共 50 条
  • [31] k-tuple restrained domination in graphs
    Henning, Michael A.
    Kazemi, Adel P.
    QUAESTIONES MATHEMATICAE, 2021, 44 (08) : 1023 - 1036
  • [32] Roman k-tuple Domination in Graphs
    Kazemi, Adel P.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2020, 15 (02): : 101 - 115
  • [33] Upper Bounds for k-Tuple (Total) Domination Numbers of Regular Graphs
    Sharareh Alipour
    Amir Jafari
    Morteza Saghafian
    Bulletin of the Iranian Mathematical Society, 2020, 46 : 573 - 577
  • [34] Upper Bounds for k-Tuple (Total) Domination Numbers of Regular Graphs
    Alipour, Sharareh
    Jafari, Amir
    Saghafian, Morteza
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (02) : 573 - 577
  • [35] Proof of a conjecture on k-tuple domination in graphs
    Xu, Guangjun
    Kang, Liying
    Shan, Erfang
    Yan, Hong
    APPLIED MATHEMATICS LETTERS, 2008, 21 (03) : 287 - 290
  • [36] k-tuple total dominator chromatic number and Mycielskian graphs
    Marweni, Walid
    GEORGIAN MATHEMATICAL JOURNAL, 2025,
  • [37] Algorithmic aspect of k-tuple domination in graphs
    Liao, CS
    Chang, GJ
    TAIWANESE JOURNAL OF MATHEMATICS, 2002, 6 (03): : 415 - 420
  • [38] On the k-domination, k-tuple domination and Roman k-domination numbers in graphs
    Rad, Nader Jafari
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2019, 111 : 177 - 183
  • [39] On the k-tuple domination of de Bruijn and Kautz digraphs
    Araki, Toru
    INFORMATION PROCESSING LETTERS, 2007, 104 (03) : 86 - 90
  • [40] The upper bound on k-tuple domination numbers of graphs
    Chang, Gerard J.
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (05) : 1333 - 1336