BOUNDS ON THE k-TUPLE DOMATIC NUMBER OF A GRAPH

被引:3
|
作者
Volkmann, Lutz [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
domination; k-tuple domination; k-tuple domatic number; DOMINATION;
D O I
10.2478/s12175-011-0052-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a positive integer, and let G be a simple graph with vertex set V (G). A vertex of a graph G dominates itself and all vertices adjacent to it. A subset S subset of V (G) is a k-tuple dominating set of G if each vertex of V (G) is dominated by at least k vertices in S. The k-tuple domatic number of G is the largest number of sets in a partition of V (G) into k-tuple dominating sets. In this paper, we present a lower bound on the k-tuple domatic number, and we establish Nordhaus-Gaddum inequalities. Some of our results extends those for the classical domatic number. (C) 2011 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:851 / 858
页数:8
相关论文
共 50 条
  • [1] k-tuple total domatic number of a graph
    Sheikholeslami, S. M.
    Volkmann, L.
    UTILITAS MATHEMATICA, 2014, 95 : 189 - 197
  • [2] Upper bounds on the k-tuple domination number and k-tuple total domination number of a graph
    Rad, Nader Jafari
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 73 : 280 - 290
  • [3] Upper Bounds on the k-Tuple (Roman) Domination Number of a Graph
    Michael A. Henning
    Nader Jafari Rad
    Graphs and Combinatorics, 2021, 37 : 325 - 336
  • [4] Improved Bounds on the k-tuple (Roman) Domination Number of a Graph
    Abd Aziz, Noor A'lawiah
    Henning, Michael A.
    Rad, Nader Jafari
    Kamarulhaili, Hailiza
    GRAPHS AND COMBINATORICS, 2022, 38 (03)
  • [5] Upper Bounds on the k-Tuple (Roman) Domination Number of a Graph
    Henning, Michael A.
    Rad, Nader Jafari
    GRAPHS AND COMBINATORICS, 2021, 37 (01) : 325 - 336
  • [6] Improved Bounds on the k-tuple (Roman) Domination Number of a Graph
    Noor A’lawiah Abd Aziz
    Michael A. Henning
    Nader Jafari Rad
    Hailiza Kamarulhaili
    Graphs and Combinatorics, 2022, 38
  • [7] Improved upper bounds for the k-tuple domination number
    Gagarin, Andrei
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 41 : 257 - 261
  • [8] A note on the k-tuple total domination number of a graph
    Kazenti, Adel P.
    TBILISI MATHEMATICAL JOURNAL, 2015, 8 (02): : 281 - 286
  • [9] New bounds on the k-domination number and the k-tuple domination number
    Rautenbach, Dieter
    Volkmann, Lutz
    APPLIED MATHEMATICS LETTERS, 2007, 20 (01) : 98 - 102
  • [10] k-TUPLE TOTAL RESTRAINED DOMINATION/DOMATIC IN GRAPHS
    Kazemi, A. P.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2014, 40 (03): : 751 - 763