A CONSTRUCTION OF SOME [N, K, D Q]-CODES MEETING THE GRIESMER BOUND

被引:4
|
作者
TAMARI, F [1 ]
机构
[1] CALTECH,PASADENA,CA 91125
关键词
D O I
10.1016/0012-365X(93)90405-I
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let [n, k, d, q]-code denote a q-ary linear code, with length n, dimension k and minimum distance d. Griesmer's bound is well known as a lower bound on n for given integers k, d and q. Linear codes meeting the Griesmer bound are called optimal linear codes. This paper is a survey on the construction of optimal linear codes. Some relations among optimal linear codes, linear programming, maxhypers and minihypers are investigated. Maxhypers and minihypers are very useful in obtaining and characterizing optimal linear codes. Furthermore, we present many optimal linear codes which are constructed using these relations and l intersectional empty sets.
引用
收藏
页码:269 / 287
页数:19
相关论文
共 50 条
  • [31] A CHARACTERIZATION OF SOME (3V(MU+1), 3V(MU) K-1, Q) MINIHYPERS AND SOME [N, K, Q(K-1)-3Q(MU), Q] CODES (K-GREATER-THAN-OR-EQUAL-TO-3, Q-GREATER-THAN-OR-EQUAL-TO-5, 1-LESS-THAN-OR-EQUAL-TO-MU-LESS-THAN-K-1) MEETING THE GRIESMER BOUND
    HAMADA, N
    HELLESETH, T
    DISCRETE MATHEMATICS, 1995, 146 (1-3) : 59 - 67
  • [32] On q-ary Grey-Rankin bound and codes meeting this bound
    Dodunekov, S
    Helleseth, T
    Zinoviev, V
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 528 - 528
  • [33] SOME CONSTRUCTION METHODS FOR ERROR-CORRECTING (D,K) CODES
    NASIRIKENARI, M
    RUSHFORTH, CK
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1994, 42 (2-4) : 958 - 965
  • [35] On structured trellises of some best [n,k,d] codes
    Farkas, P
    Hoc, R
    Hebbes, L
    5TH INTERNATIONAL SYMPOSIUM ON WIRELESS PERSONAL MULTIMEDIA COMMUNICATIONS, VOLS 1-3, PROCEEDINGS, 2002, : 1262 - 1264
  • [36] On structured trellises of some best [n,k,d] codes
    Farkas, P
    Hoc, R
    Bali, H
    SYMPOTIC'03: JOINT IST WORKSHOP ON MOBILE FUTURE & SYMPOSIUM ON TRENDS IN COMMUNICATIONS, PROCEEDINGS, 2003, : 47 - 50
  • [37] A NEW CONSTRUCTION FOR N-TRACK (D,K) CODES WITH REDUNDANCY
    KE, LG
    MARCELLIN, MW
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (04) : 1107 - 1115
  • [38] A CHARACTERIZATION OF SOME (V2+2V3, V1+2V2-K-1,3)-MINIHYPERS AND SOME (VK-30, K, 3K-1-21-3)-CODES MEETING THE GRIESMER BOUND
    HAMADA, N
    HELLESETH, T
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1993, 34 (03) : 387 - 402
  • [39] On Some Families of Codes Related to the Even Linear Codes Meeting the Grey-Rankin Bound
    Bouyukliev, Iliya
    Bouyuklieva, Stefka
    Pashinska-Gadzheva, Maria
    MATHEMATICS, 2022, 10 (23)
  • [40] On a new q-ary combinatorial analog of the binary Grey-Rankin bound and codes meeting this bound
    Bassalygo, Leonid
    Dodunekov, Stefan
    Helleseth, Tor
    Zinoviev, Victor
    2006 IEEE INFORMATION THEORY WORKSHOP, 2006, : 278 - +