A CONSTRUCTION OF SOME [N, K, D Q]-CODES MEETING THE GRIESMER BOUND

被引:4
|
作者
TAMARI, F [1 ]
机构
[1] CALTECH,PASADENA,CA 91125
关键词
D O I
10.1016/0012-365X(93)90405-I
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let [n, k, d, q]-code denote a q-ary linear code, with length n, dimension k and minimum distance d. Griesmer's bound is well known as a lower bound on n for given integers k, d and q. Linear codes meeting the Griesmer bound are called optimal linear codes. This paper is a survey on the construction of optimal linear codes. Some relations among optimal linear codes, linear programming, maxhypers and minihypers are investigated. Maxhypers and minihypers are very useful in obtaining and characterizing optimal linear codes. Furthermore, we present many optimal linear codes which are constructed using these relations and l intersectional empty sets.
引用
收藏
页码:269 / 287
页数:19
相关论文
共 50 条
  • [21] A weighted version of a result of Hamada on minihypers and on linear codes meeting the Griesmer bound
    Landjev, I.
    Storme, L.
    DESIGNS CODES AND CRYPTOGRAPHY, 2007, 45 (01) : 123 - 138
  • [22] A weighted version of a result of Hamada on minihypers and on linear codes meeting the Griesmer bound
    I. Landjev
    L. Storme
    Designs, Codes and Cryptography, 2007, 45 : 123 - 138
  • [23] Nonexistence of [n, 5, d]q codes attaining the Griesmer bound for q4-2q2-2q+1≤d≤q4-2q2-q
    Cheon, EJ
    Kato, T
    Kim, SJ
    DESIGNS CODES AND CRYPTOGRAPHY, 2005, 36 (03) : 289 - 299
  • [24] Minihypers and Linear Codes Meeting the Griesmer Bound: Improvements to Results of Hamada, Helleseth and Maekawa
    S. Ferret
    L. Storme
    Designs, Codes and Cryptography, 2002, 25 : 143 - 162
  • [25] Minihypers and linear codes meeting the Griesmer bound: Improvements to results of Hamada, Helleseth and Maekawa
    Ferret, S
    Storme, L
    DESIGNS CODES AND CRYPTOGRAPHY, 2002, 25 (02) : 143 - 162
  • [26] Nonexistence of [n, 5, d]q Codes Attaining the Griesmer Bound for q4 −2q2 −2q+1 ≤ d≤ q4−2q2 −q
    E. J. Cheon
    T. Kato
    S. J. Kim
    Designs, Codes and Cryptography, 2005, 36 : 289 - 299
  • [27] Characterization results on arbitrary non-weighted minihypers and on linear codes meeting the Griesmer bound
    De Beule, J.
    Metsch, K.
    Storme, L.
    DESIGNS CODES AND CRYPTOGRAPHY, 2008, 49 (1-3) : 187 - 197
  • [28] Characterization results on arbitrary non-weighted minihypers and on linear codes meeting the Griesmer bound
    J. De Beule
    K. Metsch
    L. Storme
    Designs, Codes and Cryptography, 2008, 49 : 187 - 197
  • [29] An extension theorem for [n, k, d](q) codes with gcd(d, q) = 2
    Yoshida, Yuri
    Maruta, Tatsuya
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2010, 48 : 117 - 131
  • [30] Weight Distributions of Divisible Codes Meeting the Griesmer Bound over F5 with Dimension 3
    Liang, Fangchi
    Ma, Yuena
    Ku, Tao
    PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON FUTURE COMPUTER AND COMMUNICATION ENGINEERING, 2014, 111 : 146 - 148