On a new q-ary combinatorial analog of the binary Grey-Rankin bound and codes meeting this bound

被引:3
|
作者
Bassalygo, Leonid [1 ]
Dodunekov, Stefan [2 ]
Helleseth, Tor [3 ]
Zinoviev, Victor [1 ]
机构
[1] Russian Acad Sci, Inst Problems Informat Transmiss, Bolshol Karetnyi Per 19,GSP-4, Moscow 101447, Russia
[2] Bulgarian Acad Sci, Inst Math & Informat, Sofia 1113, Bulgaria
[3] Univ Bergen, Selmer Ctr, Dept Informat, N-5020 Bergen, Norway
关键词
D O I
10.1109/ITW.2006.1633829
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For any integer q we present a new bound which is a q-ary combinatorial analog of the binary Grey-Rankin bound. For any prime power q we present two infinite classes of q-ary codes which meet this bound with integral equality. Moreover, we show how codes meeting this bound with equality are connected to several important classical combinatorial configurations, such as difference matrices and generalized Hadamard matrices.
引用
收藏
页码:278 / +
页数:2
相关论文
共 50 条
  • [1] On q-ary Grey-Rankin bound and codes meeting this bound
    Dodunekov, S
    Helleseth, T
    Zinoviev, V
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 528 - 528
  • [2] The Grey-Rankin bound for nonbinary codes
    L. A. Bassalygo
    S. M. Dodunekov
    V. A. Zinoviev
    T. Helleseth
    Problems of Information Transmission, 2006, 42 : 197 - 203
  • [3] The Grey-Rankin Bound for Nonbinary Codes
    Bassalygo, L.
    Dodunekov, S.
    Zinoviev, V.
    Helleseth, T.
    PROBLEMS OF INFORMATION TRANSMISSION, 2006, 42 (03) : 197 - 203
  • [4] Quasi-symmetric designs and codes meeting the Grey-Rankin bound
    McGuire, G
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 78 (02) : 280 - 291
  • [5] On Some Families of Codes Related to the Even Linear Codes Meeting the Grey-Rankin Bound
    Bouyukliev, Iliya
    Bouyuklieva, Stefka
    Pashinska-Gadzheva, Maria
    MATHEMATICS, 2022, 10 (23)
  • [6] MAXIMAL Q-ARY CODES AND PLOTKIN BOUND
    MACKENZIE, C
    SEBERRY, J
    ARS COMBINATORIA, 1988, 26B : 37 - 50
  • [7] Codes of lengths 120 and 136 meeting the Grey-Rankin bound and quasi-symmetric designs
    Gulliver, TA
    Harada, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (02) : 703 - 706
  • [8] UPPER BOUND ON THE VOLUME OF q-ARY CODES.
    Sidorenko, V.R.
    1600, (11):
  • [9] Improving the Gilbert-Varshamov bound for q-ary codes
    Vu, V
    Wu, L
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (09) : 3200 - 3208
  • [10] On the Nonexistence of q-ary Linear Codes Attaining the Griesmer Bound
    Li, Xiuli
    ARS COMBINATORIA, 2009, 90 : 137 - 143