On a new q-ary combinatorial analog of the binary Grey-Rankin bound and codes meeting this bound

被引:3
|
作者
Bassalygo, Leonid [1 ]
Dodunekov, Stefan [2 ]
Helleseth, Tor [3 ]
Zinoviev, Victor [1 ]
机构
[1] Russian Acad Sci, Inst Problems Informat Transmiss, Bolshol Karetnyi Per 19,GSP-4, Moscow 101447, Russia
[2] Bulgarian Acad Sci, Inst Math & Informat, Sofia 1113, Bulgaria
[3] Univ Bergen, Selmer Ctr, Dept Informat, N-5020 Bergen, Norway
来源
2006 IEEE INFORMATION THEORY WORKSHOP | 2006年
关键词
D O I
10.1109/ITW.2006.1633829
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For any integer q we present a new bound which is a q-ary combinatorial analog of the binary Grey-Rankin bound. For any prime power q we present two infinite classes of q-ary codes which meet this bound with integral equality. Moreover, we show how codes meeting this bound with equality are connected to several important classical combinatorial configurations, such as difference matrices and generalized Hadamard matrices.
引用
收藏
页码:278 / +
页数:2
相关论文
共 50 条