On a new q-ary combinatorial analog of the binary Grey-Rankin bound and codes meeting this bound

被引:3
|
作者
Bassalygo, Leonid [1 ]
Dodunekov, Stefan [2 ]
Helleseth, Tor [3 ]
Zinoviev, Victor [1 ]
机构
[1] Russian Acad Sci, Inst Problems Informat Transmiss, Bolshol Karetnyi Per 19,GSP-4, Moscow 101447, Russia
[2] Bulgarian Acad Sci, Inst Math & Informat, Sofia 1113, Bulgaria
[3] Univ Bergen, Selmer Ctr, Dept Informat, N-5020 Bergen, Norway
来源
2006 IEEE INFORMATION THEORY WORKSHOP | 2006年
关键词
D O I
10.1109/ITW.2006.1633829
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For any integer q we present a new bound which is a q-ary combinatorial analog of the binary Grey-Rankin bound. For any prime power q we present two infinite classes of q-ary codes which meet this bound with integral equality. Moreover, we show how codes meeting this bound with equality are connected to several important classical combinatorial configurations, such as difference matrices and generalized Hadamard matrices.
引用
收藏
页码:278 / +
页数:2
相关论文
共 50 条
  • [31] ON THE COVERING RADIUS OF BINARY, LINEAR CODES MEETING THE GRIESMER BOUND
    BUSSCHBACH, PB
    GERRETZEN, MGL
    VANTILBORG, HCA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (04) : 465 - 468
  • [32] New Constructions of q-Ary MDS Array Codes With Multiple Parities and Their Effective Decoding
    Lv, Jingjie
    Fang, Weijun
    Chen, Xiangyu
    Yang, Jing
    Xia, Shu-Tao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (11) : 7082 - 7098
  • [33] Some New Constructions of q-ary Codes for Correcting a Burst of at Most t Deletions
    Song, Wentu
    Cai, Kui
    Quek, Tony Q. S.
    ENTROPY, 2025, 27 (01)
  • [34] New q-ary quantum MDS codes of length strictly larger than q+1
    Kircali, Mustafa
    Ozbudak, Ferruh
    QUANTUM INFORMATION PROCESSING, 2024, 23 (12)
  • [35] A NEW CLASS OF NONBINARY CODES MEETING THE GRIESMER BOUND
    HAMADA, N
    HELLESETH, T
    YTREHUS, O
    DISCRETE APPLIED MATHEMATICS, 1993, 47 (03) : 219 - 226
  • [36] The characterization of binary constant weight codes meeting the bound of Fu and Shen
    Fu, Fang-Wei
    Xia, Shu-Tho
    DESIGNS CODES AND CRYPTOGRAPHY, 2007, 43 (01) : 9 - 20
  • [37] The characterization of binary constant weight codes meeting the bound of Fu and Shen
    Fang-Wei Fu
    Shu-Tao Xia
    Designs, Codes and Cryptography, 2007, 43 : 9 - 20
  • [38] Equidistant Codes Meeting the Plotkin Bound are Not Optimal on the Binary Symmetric Channel
    Chen, Po-Ning
    Lin, Hsuan-Yin
    Moser, Stefan M.
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 3015 - 3019
  • [39] r-Identifying codes in binary Hamming space, q-ary Lee space and incomplete hypercube
    Dhanalakshmi, R.
    Durairajan, C.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (02)
  • [40] Upper bound for a hybrid sum over Galois Rings with applications to aperiodic correlation of some q-ary sequences
    Shanbhag, AG
    Kumar, PV
    Helleseth, T
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (01) : 250 - 254