r-Identifying codes in binary Hamming space, q-ary Lee space and incomplete hypercube

被引:2
|
作者
Dhanalakshmi, R. [1 ]
Durairajan, C. [1 ]
机构
[1] Bharathidasan Univ, Dept Math, Tiruchirappalli 620024, Tamil Nadu, India
关键词
Binary Hamming spaces; q-ary Lee spaces; code construction; identifying codes; direct Sum; incomplete hypercubes; BOUNDS;
D O I
10.1142/S1793830919500277
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study about monotonicity of r-identifying codes in binary Hamming space, q-ary Lee space and incomplete hypercube. Also, we give the lower bounds for M-1,q((<= l)) (n) where M-1,q((<= l)) (n) is the smallest cardinality among all r-identifying codes in Z(q)(n) with respect to the Lee metric. We prove the existence of 1-identifying code in an incomplete hypercube. Also, we give the construction techniques for r-identifying codes in the incomplete hypercubes in Secs. 4.1 and 4.2. Using these techniques, we give the tables (see Tables 1-6) of upper bounds for M-IH,M-r(k) where M-IH,M-r(k) is the smallest cardinality among all r-identifying codes in an incomplete hypercube with k processors. Also, we give the exact values of M-IH,M-r(k) for small values of r and k (see Sec. 4.3).
引用
收藏
页数:14
相关论文
共 33 条
  • [1] BOUNDS ON r-IDENTIFYING CODES IN q-ARY LEE SPACE
    Dhanalakshmi, Ramalingam
    Durairajan, Chinnapillai
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2021, 16 (01) : 53 - 71
  • [2] On partitions of the q-ary hamming space into few spheres
    Klein, A
    Wessler, M
    JOURNAL OF COMBINATORIAL DESIGNS, 2006, 14 (03) : 183 - 201
  • [3] Bounds for multiple packing in q-ary Hamming space
    Blinovsky, V
    ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 401 - 401
  • [4] New identifying codes in the binary Hamming space
    Charon, Irene
    Cohen, Gerard
    Hudry, Olivier
    Lobstein, Antoine
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (02) : 491 - 501
  • [5] On binary linear r-identifying codes
    Ranto, Sanna
    DESIGNS CODES AND CRYPTOGRAPHY, 2011, 60 (01) : 81 - 89
  • [6] On binary linear r-identifying codes
    Sanna Ranto
    Designs, Codes and Cryptography, 2011, 60 : 81 - 89
  • [7] Binary and q-ary Tardos codes, revisited
    Skoric, Boris
    Oosterwijk, Jan-Jaap
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 74 (01) : 75 - 111
  • [8] The relative generalized Hamming weight of linear q-ary codes and their subcodes
    Zihui Liu
    Wende Chen
    Yuan Luo
    Designs, Codes and Cryptography, 2008, 48 : 111 - 123
  • [9] Links between discriminating and identifying codes in the binary Hamming space
    Charon, Irene
    Cohen, Gerard
    Hudry, Olivier
    Lobstein, Antoine
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 2007, 4851 : 267 - +
  • [10] Generalized hamming weights of q-ary Reed-Muller codes
    Heijnen, P
    Pellikaan, R
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (01) : 181 - 196