WEYL'S TYPE THEOREMS FOR ALGEBRAICALLY (p, k)-QU ASIHYPONORMAL OPERATORS

被引:3
|
作者
Rashid, Mohammad Hussein Mohammad [1 ]
Noorani, Mohd Salmi Mohd [2 ]
机构
[1] Mutah Univ, Fac Sci, Dept Math & Stat, POB 7, Al Karak, Jordan
[2] Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Bangi 43600, Selangor Darul, Malaysia
来源
关键词
(p; k)-quasihyponormal; single valued extension property; Fred holm theory; Browder's theory; spectrum;
D O I
10.4134/CKMS.2012.27.1.077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a bounded linear operator T we prove the following as-sertions: (a) If T is algebraically (p, k)-quasihyponormal, then T is alpha-isoloid, polaroid, reguloid and alpha-polaroid. (b) If T* is algebraically (p, k)quasihyponormal, then alpha-Weyl's theorem holds for f(T) for every f epsilon Hol(sigma(T)), where Hol(sigma(T)) is the space of all functions that analytic in an open neighborhoods of sigma(T) of T. (c) If T* is algebraically (p, k)-quasihyponormal, then generalized sigma-Weyl's theorem holds for f(T) for every f epsilon Hol(sigma(T)). (d) If T is a (p,k)-quasihyponormal operator, then the spectral mapping theorem holds for semi-B-essential approximate point spectrum sigma(-)(sBF+)(T), and for left Drazin spectrum sigma(lD)(T) for every f epsilon Hol(sigma(T)).
引用
收藏
页码:77 / 95
页数:19
相关论文
共 50 条