WEYL'S TYPE THEOREMS FOR ALGEBRAICALLY (p, k)-QU ASIHYPONORMAL OPERATORS

被引:3
|
作者
Rashid, Mohammad Hussein Mohammad [1 ]
Noorani, Mohd Salmi Mohd [2 ]
机构
[1] Mutah Univ, Fac Sci, Dept Math & Stat, POB 7, Al Karak, Jordan
[2] Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Bangi 43600, Selangor Darul, Malaysia
来源
关键词
(p; k)-quasihyponormal; single valued extension property; Fred holm theory; Browder's theory; spectrum;
D O I
10.4134/CKMS.2012.27.1.077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a bounded linear operator T we prove the following as-sertions: (a) If T is algebraically (p, k)-quasihyponormal, then T is alpha-isoloid, polaroid, reguloid and alpha-polaroid. (b) If T* is algebraically (p, k)quasihyponormal, then alpha-Weyl's theorem holds for f(T) for every f epsilon Hol(sigma(T)), where Hol(sigma(T)) is the space of all functions that analytic in an open neighborhoods of sigma(T) of T. (c) If T* is algebraically (p, k)-quasihyponormal, then generalized sigma-Weyl's theorem holds for f(T) for every f epsilon Hol(sigma(T)). (d) If T is a (p,k)-quasihyponormal operator, then the spectral mapping theorem holds for semi-B-essential approximate point spectrum sigma(-)(sBF+)(T), and for left Drazin spectrum sigma(lD)(T) for every f epsilon Hol(sigma(T)).
引用
收藏
页码:77 / 95
页数:19
相关论文
共 50 条
  • [31] Weyl’s theorem for algebraically wF(p, r, q) operators with p, r > 0 and q ≥ 1
    M. H. M. Rashid
    Ukrainian Mathematical Journal, 2012, 63 : 1256 - 1267
  • [32] Weyl's theorems and continuity of spectra in the class of p-hyponormal operators
    Djordjevic, SV
    Duggal, BP
    STUDIA MATHEMATICA, 2000, 143 (01) : 23 - 32
  • [33] Weyl Type Theorems for Cesaro-Hypercyclic Operators
    Tajmouati, Abdelaziz
    El Berrag, Mohammed
    FILOMAT, 2019, 33 (17) : 5639 - 5644
  • [34] Weyl-type theorems for unbounded posinormal operators
    A. Gupta
    K. Mamtani
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2017, 52 : 191 - 197
  • [35] Weyl-type theorems for unbounded posinormal operators
    Gupta, A.
    Mamtani, K.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2017, 52 (04): : 191 - 197
  • [36] Weyl Type Theorems for Left and Right Polaroid Operators
    Aiena, Pietro
    Aponte, Elvis
    Balzan, Edixon
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 66 (01) : 1 - 20
  • [37] New Extended Weyl Type Theorems and Polaroid Operators
    An, Il Ju
    Han, Young Min
    FILOMAT, 2013, 27 (06) : 1061 - 1073
  • [38] Weyl Type Theorems for Selfadjoint Operators on Krein Spaces
    An, Il Ju
    Heo, Jaeseong
    FILOMAT, 2018, 32 (17) : 6001 - 6016
  • [39] SKEW COMPLEX SYMMETRIC OPERATORS AND WEYL TYPE THEOREMS
    Ko, Eungil
    Ko, Eunjeong
    Lee, Ji Eun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (04) : 1269 - 1283
  • [40] Weyl Type Theorems for Left and Right Polaroid Operators
    Pietro Aiena
    Elvis Aponte
    Edixon Balzan
    Integral Equations and Operator Theory, 2010, 66 : 1 - 20