WEYL'S TYPE THEOREMS FOR ALGEBRAICALLY (p, k)-QU ASIHYPONORMAL OPERATORS

被引:3
|
作者
Rashid, Mohammad Hussein Mohammad [1 ]
Noorani, Mohd Salmi Mohd [2 ]
机构
[1] Mutah Univ, Fac Sci, Dept Math & Stat, POB 7, Al Karak, Jordan
[2] Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Bangi 43600, Selangor Darul, Malaysia
来源
关键词
(p; k)-quasihyponormal; single valued extension property; Fred holm theory; Browder's theory; spectrum;
D O I
10.4134/CKMS.2012.27.1.077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a bounded linear operator T we prove the following as-sertions: (a) If T is algebraically (p, k)-quasihyponormal, then T is alpha-isoloid, polaroid, reguloid and alpha-polaroid. (b) If T* is algebraically (p, k)quasihyponormal, then alpha-Weyl's theorem holds for f(T) for every f epsilon Hol(sigma(T)), where Hol(sigma(T)) is the space of all functions that analytic in an open neighborhoods of sigma(T) of T. (c) If T* is algebraically (p, k)-quasihyponormal, then generalized sigma-Weyl's theorem holds for f(T) for every f epsilon Hol(sigma(T)). (d) If T is a (p,k)-quasihyponormal operator, then the spectral mapping theorem holds for semi-B-essential approximate point spectrum sigma(-)(sBF+)(T), and for left Drazin spectrum sigma(lD)(T) for every f epsilon Hol(sigma(T)).
引用
收藏
页码:77 / 95
页数:19
相关论文
共 50 条
  • [21] Weyl type theorems and hypercyclic operators II
    Cao, Xiaohong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (06) : 1701 - 1708
  • [22] Weyl's theorem for algebraically quasi-paranormal operators
    Han, Young Min
    Na, Won Hee
    FILOMAT, 2014, 28 (02) : 411 - 419
  • [23] Weyl's theorem for algebraically quasi-class A operators
    An, Il Ju
    Han, Young Min
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 62 (01) : 1 - 10
  • [24] Weyl’s Theorem for Algebraically Quasi-class A Operators
    Il Ju An
    Young Min Han
    Integral Equations and Operator Theory, 2008, 62 : 1 - 10
  • [25] Weyl type theorems for p-hyponormal and M-hyponormal operators
    Cao, XH
    Guo, MZ
    Meng, B
    STUDIA MATHEMATICA, 2004, 163 (02) : 177 - 188
  • [26] WEYL TYPE THEOREM AND SPECTRUM FOR (p, k)-QUASIPOSINORMAL OPERATORS
    Senthilkumar, D.
    Naik, P. Maheswari
    Kiruthika, D.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2013, 7 (02): : 30 - 41
  • [27] Weyl's theorem for algebraically totally hereditarily normaloid operators
    Duggal, BP
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 308 (02) : 578 - 587
  • [28] Weyl's theorems for some classes of operators
    Aiena, P
    Villafañe, F
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 53 (04) : 453 - 466
  • [29] Weyl’s Theorems for Some Classes of Operators
    Pietro Aiena
    Fernando Villafañe
    Integral Equations and Operator Theory, 2005, 53 : 453 - 466
  • [30] Generalized Weyl's theorems for polaroid operators
    Carpintero, C.
    Munoz, D.
    Rosas, E.
    Garcia, O.
    Sanabria, J.
    CARPATHIAN JOURNAL OF MATHEMATICS, 2011, 27 (01) : 24 - 33