Hardy and Rellich inequalities for anisotropic p-sub-Laplacians

被引:0
|
作者
M. Ruzhansky
B. Sabitbek
D. Suragan
机构
[1] Ghent University,Department of Mathematics: Analysis, Logic and Discrete Mathematics
[2] Queen Mary University of London,School of Mathematical Sciences
[3] Institute of Mathematics and Mathematical Modeling,Department of Mathematics
[4] Al-Farabi Kazakh National University,undefined
[5] Nazarbayev University,undefined
关键词
Stratified group; Anisotropic ; -sub-Laplacian; Hardy inequality; Rellich inequality; Picone identity; 35A23; 35H20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we establish the subelliptic Picone type identities. As consequences, we obtain Hardy and Rellich type inequalities for anisotropic p-sub-Laplacians which are operators of the form Lpf:=∑i=1NXi|Xif|pi-2Xif,1<pi<∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathcal {L}}_{p}f:= \sum _{i=1}^{N} X_i\left( |X_i f|^{p_i-2} X_i f \right) ,\quad 1<p_i<\infty , \end{aligned}$$\end{document}where Xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_i$$\end{document}, i=1,…,N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,\ldots , N$$\end{document}, are the generators of the first stratum of a stratified (Lie) group. Moreover, analogues of Hardy type inequalities with multiple singularities and many-particle Hardy type inequalities are obtained on stratified groups.
引用
收藏
页码:380 / 398
页数:18
相关论文
共 50 条
  • [1] Hardy and Rellich inequalities for anisotropic p-sub-Laplacians
    Ruzhansky, M.
    Sabitbek, B.
    Suragan, D.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 14 (02) : 380 - 398
  • [2] RELLICH INEQUALITIES FOR SUB-LAPLACIANS WITH DRIFT
    Ruzhansky, Michael
    Yessirkegenov, Nurgissa
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (03) : 1335 - 1349
  • [3] Principal Frequency of p-Sub-Laplacians for General Vector Fields
    Ruzhansky, Michael
    Sabitbek, Bolys
    Suragan, Durvudkhan
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2021, 40 (01): : 97 - 109
  • [4] Hardy inequalities for magnetic p-Laplacians
    Cazacu, Cristian
    Krejcirik, David
    Lam, Nguyen
    Laptev, Ari
    NONLINEARITY, 2024, 37 (03)
  • [5] Existence of solutions for p-sub-Laplacians with nonlinear sources on the Heisenberg group
    Kassymov, Aidyn
    Suragan, Durvudkhan
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (04) : 614 - 625
  • [6] Weighted anisotropic Hardy and Rellich type inequalities for general vector fields
    Ruzhansky, Michael
    Sabitbek, Bolys
    Suragan, Durvudkhan
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2019, 26 (02):
  • [7] Weighted anisotropic Hardy and Rellich type inequalities for general vector fields
    Michael Ruzhansky
    Bolys Sabitbek
    Durvudkhan Suragan
    Nonlinear Differential Equations and Applications NoDEA, 2019, 26
  • [8] Critical Kirchhoff equations involving the p-sub-Laplacians operators on the Heisenberg group
    Sun, Xueqi
    Song, Yueqiang
    Liang, Sihua
    Zhang, Binlin
    BULLETIN OF MATHEMATICAL SCIENCES, 2023, 13 (02)
  • [9] Hardy and Rellich Type Inequalities with Remainders
    Nasibullin, Ramil
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (01) : 87 - 110
  • [10] Hardy and Rellich type inequalities with remainders
    Ramil Nasibullin
    Czechoslovak Mathematical Journal, 2022, 72 : 87 - 110