Asymptotics for Cliques in Scale-Free Random Graphs

被引:0
|
作者
Alastair Haig
Fraser Daly
Seva Shneer
机构
[1] Heriot-Watt University,Department of Actuarial Mathematics and Statistics
来源
关键词
Chung–Lu model; Scale–free networks; Inhomogeneous random graph; Cliques; Slowly varying function; 05C80; 60F05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we establish asymptotics (as the size of the graph grows to infinity) for the expected number of cliques in the Chung–Lu inhomogeneous random graph model in which vertices are assigned independent weights which have tail probabilities h1-αl(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h^{1-\alpha }l(h)$$\end{document}, where α>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >2$$\end{document} and l is a slowly varying function. Each pair of vertices is connected by an edge with a probability proportional to the product of the weights of those vertices. We present a complete set of asymptotics for all clique sizes and for all non-integer α>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha > 2$$\end{document}. We also explain why the case of an integer α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is different, and present partial results for the asymptotics in that case.
引用
收藏
相关论文
共 50 条
  • [41] Scale-Free Graphs of Increasing Degree
    Cooper, Colin
    Pralat, Pawel
    RANDOM STRUCTURES & ALGORITHMS, 2011, 38 (04) : 396 - 421
  • [42] Unimodular lattice triangulations as small-world and scale-free random graphs
    Krueger, B.
    Schmidt, E. M.
    Mecke, K.
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [43] Scale-free properties of weighted random graphs: Minimum spanning trees and percolation
    Kalisky, T
    Sreenivasan, S
    Braunstein, LA
    Buldyrev, SV
    Havlin, S
    Stanley, HE
    SCIENCE OF COMPLEX NETWORKS: FROM BIOLOGY TO THE INTERNET AND WWW, 2005, 776 : 79 - 89
  • [44] Sparse cliques trump scale-free networks in coordination and competition
    David A. Gianetto
    Babak Heydari
    Scientific Reports, 6
  • [45] Sparse cliques trump scale-free networks in coordination and competition
    Gianetto, David A.
    Heydari, Babak
    SCIENTIFIC REPORTS, 2016, 6
  • [46] The Diameter of a Scale-Free Random Graph
    Béla Bollobás*
    Oliver Riordan
    Combinatorica, 2004, 24 : 5 - 34
  • [47] The diameter of a scale-free random graph
    Bollobás, B
    Riordan, O
    COMBINATORICA, 2004, 24 (01) : 5 - 34
  • [48] Random models of scale-free networks
    Geng, XM
    Li, Q
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 356 (2-4) : 554 - 562
  • [49] Clustering of random scale-free networks
    Colomer-de-Simon, Pol
    Boguna, Marian
    PHYSICAL REVIEW E, 2012, 86 (02)
  • [50] Scale-Free Random SAT Instances
    Ansotegui, Carlos
    Luisa Bonet, Maria
    Levy, Jordi
    ALGORITHMS, 2022, 15 (06)