Asymptotics for Cliques in Scale-Free Random Graphs

被引:0
|
作者
Alastair Haig
Fraser Daly
Seva Shneer
机构
[1] Heriot-Watt University,Department of Actuarial Mathematics and Statistics
来源
关键词
Chung–Lu model; Scale–free networks; Inhomogeneous random graph; Cliques; Slowly varying function; 05C80; 60F05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we establish asymptotics (as the size of the graph grows to infinity) for the expected number of cliques in the Chung–Lu inhomogeneous random graph model in which vertices are assigned independent weights which have tail probabilities h1-αl(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h^{1-\alpha }l(h)$$\end{document}, where α>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >2$$\end{document} and l is a slowly varying function. Each pair of vertices is connected by an edge with a probability proportional to the product of the weights of those vertices. We present a complete set of asymptotics for all clique sizes and for all non-integer α>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha > 2$$\end{document}. We also explain why the case of an integer α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is different, and present partial results for the asymptotics in that case.
引用
收藏
相关论文
共 50 条
  • [31] On Reversible Cascades in Scale-Free and Erdos-Renyi Random Graphs
    Chang, Ching-Lueh
    Wang, Chao-Hong
    THEORY OF COMPUTING SYSTEMS, 2013, 52 (02) : 303 - 318
  • [32] Classical Random Graphs with Unbounded Expected Degrees are Locally Scale-Free
    Shang, Yilun
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (1-2): : 61 - 64
  • [33] Stochastic Methods on Random Recursive Graphs Having Scale-free Properties
    Wang, Xiaomin
    Yao, Bing
    Yao, Ming
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND COMPUTER APPLICATION, 2016, 30 : 357 - 360
  • [34] COOPERATION IN THE PRISONER'S DILEMMA GAME IN RANDOM SCALE-FREE GRAPHS
    Poncela, Julia
    Gomez-Gardenes, Jesus
    Moreno, Yamir
    Mario Floria, Luis
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (03): : 849 - 857
  • [35] A New Model for a Scale-Free Hierarchical Structure of Isolated Cliques
    Shigezumi, Takeya
    Uno, Yushi
    Watanabe, Osamu
    WALCOM: ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2010, 5942 : 216 - +
  • [36] A new model for a scale-free hierarchical structure of isolated cliques
    Shigezumi T.
    Uno Y.
    Watanabe O.
    Journal of Graph Algorithms and Applications, 2011, 15 (05) : 661 - 682
  • [37] Degree correlation in scale-free graphs
    Fotouhi, Babak
    Rabbat, Michael G.
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (12):
  • [38] Scalable generation of scale-free graphs
    Sanders, Peter
    Schulz, Christian
    INFORMATION PROCESSING LETTERS, 2016, 116 (07) : 489 - 491
  • [39] Scale-free graphs with many edges
    Stegehuis, Clara
    Zwart, Bert
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2023, 28
  • [40] Degree correlation in scale-free graphs
    Babak Fotouhi
    Michael G. Rabbat
    The European Physical Journal B, 2013, 86