Asymptotics for Cliques in Scale-Free Random Graphs

被引:0
|
作者
Alastair Haig
Fraser Daly
Seva Shneer
机构
[1] Heriot-Watt University,Department of Actuarial Mathematics and Statistics
来源
关键词
Chung–Lu model; Scale–free networks; Inhomogeneous random graph; Cliques; Slowly varying function; 05C80; 60F05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we establish asymptotics (as the size of the graph grows to infinity) for the expected number of cliques in the Chung–Lu inhomogeneous random graph model in which vertices are assigned independent weights which have tail probabilities h1-αl(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h^{1-\alpha }l(h)$$\end{document}, where α>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >2$$\end{document} and l is a slowly varying function. Each pair of vertices is connected by an edge with a probability proportional to the product of the weights of those vertices. We present a complete set of asymptotics for all clique sizes and for all non-integer α>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha > 2$$\end{document}. We also explain why the case of an integer α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is different, and present partial results for the asymptotics in that case.
引用
收藏
相关论文
共 50 条
  • [21] Muller's ratchet in random graphs and scale-free networks
    Campos, Paulo R. A.
    Combadao, Jaime
    Dionisio, Francisco
    Gordo, Isabel
    PHYSICAL REVIEW E, 2006, 74 (04):
  • [22] Scale-free networks emerging from weighted random graphs
    Kalisky, T
    Sreenivasan, S
    Braunstein, LA
    Buldyrev, SV
    Havlin, S
    Stanley, HE
    PHYSICAL REVIEW E, 2006, 73 (02)
  • [23] Evolution of scale-free random graphs: Potts model formulation
    Lee, DS
    Goh, KI
    Kahng, B
    Kim, D
    NUCLEAR PHYSICS B, 2004, 696 (03) : 351 - 380
  • [24] Penalising transmission to hubs in scale-free spatial random graphs
    Komjathy, Julia
    Lapinskas, John
    Lengler, Johannes
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (04): : 1968 - 2016
  • [25] Diameter in ultra-small scale-free random graphs
    Caravenna, Francesco
    Garavaglia, Alessandro
    van der Hofstad, Remco
    RANDOM STRUCTURES & ALGORITHMS, 2019, 54 (03) : 444 - 498
  • [26] Finding Induced Subgraphs in Scale-Free Inhomogeneous Random Graphs
    Cardinaels, Ellen
    van Leeuwaarden, Johan S. H.
    Stegehuis, Clara
    ALGORITHMS AND MODELS FOR THE WEB GRAPH (WAW 2018), 2018, 10836 : 1 - 15
  • [27] Random graphs, small-worlds and scale-free networks
    Lehmann, KA
    Kaufmann, M
    PEER-TO-PEER SYSTEMS AND APPLICATIONS, 2005, 3485 : 57 - 76
  • [28] Directed scale-free graphs
    Bollobás, B
    Borgs, C
    Chayes, J
    Riordan, O
    PROCEEDINGS OF THE FOURTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2003, : 132 - 139
  • [29] On the scale-free intersection graphs
    Yao, X
    Zhang, CS
    Chen, JW
    Li, YD
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, PT 2, 2005, 3481 : 1217 - 1224
  • [30] Detecting Hubs and Quasi Cliques in Scale-free Networks
    Srihari, Sriganesh
    Ng, Hoong Kee
    Ning, Kang
    Leong, Hon Wai
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3274 - 3277