Asymptotics for Cliques in Scale-Free Random Graphs

被引:0
|
作者
Alastair Haig
Fraser Daly
Seva Shneer
机构
[1] Heriot-Watt University,Department of Actuarial Mathematics and Statistics
来源
关键词
Chung–Lu model; Scale–free networks; Inhomogeneous random graph; Cliques; Slowly varying function; 05C80; 60F05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we establish asymptotics (as the size of the graph grows to infinity) for the expected number of cliques in the Chung–Lu inhomogeneous random graph model in which vertices are assigned independent weights which have tail probabilities h1-αl(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h^{1-\alpha }l(h)$$\end{document}, where α>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >2$$\end{document} and l is a slowly varying function. Each pair of vertices is connected by an edge with a probability proportional to the product of the weights of those vertices. We present a complete set of asymptotics for all clique sizes and for all non-integer α>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha > 2$$\end{document}. We also explain why the case of an integer α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is different, and present partial results for the asymptotics in that case.
引用
收藏
相关论文
共 50 条
  • [1] Asymptotics for Cliques in Scale-Free Random Graphs
    Haig, Alastair
    Daly, Fraser
    Shneer, Seva
    JOURNAL OF STATISTICAL PHYSICS, 2022, 189 (02)
  • [2] Maximal cliques in scale-free random graphs
    Blaesius, Thomas
    Katzmann, Maximillian
    Stegehuis, Clara
    NETWORK SCIENCE, 2024,
  • [3] Counting Cliques and Cycles in Scale-Free Inhomogeneous Random Graphs
    A. J. E. M. Janssen
    Johan S. H. van Leeuwaarden
    Seva Shneer
    Journal of Statistical Physics, 2019, 175 : 161 - 184
  • [4] Counting Cliques and Cycles in Scale-Free Inhomogeneous Random Graphs
    Janssen, A. J. E. M.
    van Leeuwaarden, Johan S. H.
    Shneer, Seva
    JOURNAL OF STATISTICAL PHYSICS, 2019, 175 (01) : 161 - 184
  • [5] Number of cliques in random scale-free network ensembles
    Bianconi, Ginestra
    Marsili, Matteo
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 224 (1-2) : 1 - 6
  • [6] Emergence of large cliques in random scale-free networks
    Bianconi, G
    Marsili, M
    EUROPHYSICS LETTERS, 2006, 74 (04): : 740 - 746
  • [7] PageRank in Scale-Free Random Graphs
    Chen, Ningyuan
    Litvak, Nelly
    Olvera-Cravioto, Mariana
    ALGORITHMS AND MODELS FOR THE WEB GRAPH (WAW 2014), 2014, 8882 : 120 - 131
  • [8] Statistical ensemble of scale-free random graphs
    Burda, Z
    Correia, JD
    Krzywicki, A
    PHYSICAL REVIEW E, 2001, 64 (04):
  • [9] Scale-free random graphs and Potts model
    D- S Lee
    K- I Goh
    B Kahng
    D Kim
    Pramana, 2005, 64 : 1149 - 1159
  • [10] Scale-free random graphs and Potts model
    Lee, DS
    Goh, KI
    Kahng, B
    Kim, D
    PRAMANA-JOURNAL OF PHYSICS, 2005, 64 (06): : 1149 - 1159