Fractional calculus for power functions and eigenvalues of the fractional Laplacian

被引:0
|
作者
Bartłlomiej Dyda
机构
[1] University of Bielefeld,Faculty of Mathematics
[2] Wrocław University of Technology,Institute of Mathematics and Computer Science
关键词
fractional Laplacian; ball; killed stable process; eigenvalue; power function; hypergeometric function; Primary 35P15; Secondary 60G52, 31C25;
D O I
暂无
中图分类号
学科分类号
摘要
We calculate the fractional Laplacian Δα/2 for functions of the form u(x) = (1 − |x|2)+p and v(x) = xdu(x). As an application, we estimate the first eigenvalues of the fractional Laplacian in a ball.
引用
收藏
页码:536 / 555
页数:19
相关论文
共 50 条
  • [31] MONOTONICITY OF EIGENVALUES OF THE FRACTIONAL p-LAPLACIAN WITH SINGULAR WEIGHTS
    Iannizzotto, Antonio
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 61 (01) : 423 - 443
  • [32] SHARPER ESTIMATES FOR THE EIGENVALUES OF THE DIRICHLET FRACTIONAL LAPLACIAN ON PLANAR DOMAINS
    Yildirim, Selma
    Yolcu, Turkay
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [33] Neumann fractional p-Laplacian: Eigenvalues and existence results
    Mugnai, Dimitri
    Lippi, Edoardo Proietti
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 188 : 455 - 474
  • [34] A note on the persistence of multiplicity of eigenvalues of fractional Laplacian under perturbations
    Ghimenti, Marco
    Micheletti, Anna Maria
    Pistoia, Angela
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 245
  • [35] Definition of fractional Laplacian for functions with polynomial growth
    Dipierro, Serena
    Savin, Ovidiu
    Valdinoci, Enrico
    REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (04) : 1079 - 1122
  • [36] Fractional Calculus and Hypergeometric Functions in Complex Analysis
    Oros, Gheorghe
    Oros, Georgia Irina
    FRACTAL AND FRACTIONAL, 2024, 8 (04)
  • [37] Fractional calculus, zeta functions and Shannon entropy
    Guariglia, Emanuel
    OPEN MATHEMATICS, 2021, 19 (01): : 87 - 100
  • [38] A collection of correct fractional calculus for discontinuous functions
    Feng, Tian
    Chen, Yangquan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2025, 28 (01) : 76 - 92
  • [39] Adaptive Activation Functions Using Fractional Calculus
    Zamora-Esquivel, Julio
    Cruz Vargas, Adan
    Rodigo Camacho-Perez, Jose
    Lopez Meyer, Paulo
    Cordourier, Hector
    Tickoo, Omesh
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 2006 - 2013
  • [40] Infinite series representation of functions in fractional calculus
    Wei, Yiheng
    Chen, YangQuan
    Gao, Qing
    Wang, Yong
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 1697 - 1702