Neumann fractional p-Laplacian: Eigenvalues and existence results

被引:21
|
作者
Mugnai, Dimitri [1 ]
Lippi, Edoardo Proietti [2 ]
机构
[1] Tuscia Univ, Dept Ecol & Biol, I-01100 Viterbo, Italy
[2] Univ Florence, Dept Math & Comp Sci, Viale Morgagni 67-A, I-50134 Florence, Italy
关键词
Fractional p-Laplacian; Neumann boundary conditions; Eigenvalues; Subcritical perturbation; BOUNDARY-CONDITIONS; DIRICHLET PROBLEM; DIFFUSION; EQUATIONS;
D O I
10.1016/j.na.2019.06.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop some properties of the p-Neumann derivative for the fractional p-Laplacian in bounded domains with general p > 1. In particular, we prove the existence of a diverging sequence of eigenvalues and we introduce the evolution problem associated to such operators, studying the basic properties of solutions. Finally, we study a nonlinear problem with source in absence of the Ambrosetti-Rabinowitz condition. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:455 / 474
页数:20
相关论文
共 50 条