Neumann fractional p-Laplacian: Eigenvalues and existence results

被引:21
|
作者
Mugnai, Dimitri [1 ]
Lippi, Edoardo Proietti [2 ]
机构
[1] Tuscia Univ, Dept Ecol & Biol, I-01100 Viterbo, Italy
[2] Univ Florence, Dept Math & Comp Sci, Viale Morgagni 67-A, I-50134 Florence, Italy
关键词
Fractional p-Laplacian; Neumann boundary conditions; Eigenvalues; Subcritical perturbation; BOUNDARY-CONDITIONS; DIRICHLET PROBLEM; DIFFUSION; EQUATIONS;
D O I
10.1016/j.na.2019.06.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop some properties of the p-Neumann derivative for the fractional p-Laplacian in bounded domains with general p > 1. In particular, we prove the existence of a diverging sequence of eigenvalues and we introduce the evolution problem associated to such operators, studying the basic properties of solutions. Finally, we study a nonlinear problem with source in absence of the Ambrosetti-Rabinowitz condition. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:455 / 474
页数:20
相关论文
共 50 条
  • [31] SOME EXISTENCE RESULTS OF SOLUTIONS FOR p-LAPLACIAN
    陈志辉
    沈尧天
    姚仰新
    ActaMathematicaScientia, 2003, (04) : 487 - 496
  • [32] Linking and existence results for perturbations of the p-Laplacian
    Fan, XL
    Li, ZC
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (08) : 1413 - 1420
  • [33] Some existence results of solutions for p-Laplacian
    Chen, ZH
    Shen, YT
    Yao, YX
    ACTA MATHEMATICA SCIENTIA, 2003, 23 (04) : 487 - 496
  • [34] Existence for doubly nonlinear fractional p-Laplacian equations
    Kato, Nobuyuki
    Misawa, Masashi
    Nakamura, Kenta
    Yamaura, Yoshihiko
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (06) : 2481 - 2527
  • [35] The fractional Neumann and Robin type boundary conditions for the regional fractional p-Laplacian
    Warma, Mahamadi
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (01): : 1 - 46
  • [36] The fractional Neumann and Robin type boundary conditions for the regional fractional p-Laplacian
    Mahamadi Warma
    Nonlinear Differential Equations and Applications NoDEA, 2016, 23
  • [37] Existence and multiplicity results for a class of p-Laplacian problems with Neumann-Robin boundary conditions
    Afrouzi, G. A.
    Moghaddam, M. Khaleghy
    CHAOS SOLITONS & FRACTALS, 2006, 30 (04) : 967 - 973
  • [38] Extremal p-Laplacian eigenvalues
    Antunes, Pedro R. S.
    NONLINEARITY, 2019, 32 (12) : 5087 - 5109
  • [39] On the perturbation of eigenvalues for the p-Laplacian
    Melián, JG
    De Lis, JS
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (10): : 893 - 898
  • [40] Mixed eigenvalues of p-Laplacian
    Mu-Fa Chen
    Lingdi Wang
    Yuhui Zhang
    Frontiers of Mathematics in China, 2015, 10 : 249 - 274