STABILITY OF VARIATIONAL EIGENVALUES FOR THE FRACTIONAL p-LAPLACIAN

被引:99
|
作者
Brasco, Lorenzo [1 ]
Parini, Enea [1 ]
Squassina, Marco [2 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille I2M, UMR 7373, 39 Rue Frederic Joliot Curie, F-13453 Marseille, France
[2] Univ Verona, Dipartimento Informat, I-37134 Verona, Italy
关键词
Fractional p-Laplacian; nonlocal eigenvalue problems; critical points; Gamma-convergence; EQUATIONS; BEHAVIOR;
D O I
10.3934/dcds.2016.36.1813
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By virtue of Gamma-convergence arguments, we investigate the stability of variational eigenvalues associated with a given topological index for the fractional p-Laplacian operator, in the singular limit as the nonlocal operator converges to the p-Laplacian. We also obtain the convergence of the corresponding normalized eigenfunctions in a suitable fractional norm.
引用
收藏
页码:1813 / 1845
页数:33
相关论文
共 50 条