A note on the persistence of multiplicity of eigenvalues of fractional Laplacian under perturbations

被引:0
|
作者
Ghimenti, Marco [1 ]
Micheletti, Anna Maria [1 ]
Pistoia, Angela [2 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
[2] Univ Roma La Sapienza, Dipartimento SBAI, Via Antonio Scarpa 16, I-00161 Pisa, Italy
关键词
Eigenvalues; Fractional Laplacian; Generic properties; Simplicity; VARIATIONAL ELLIPTIC OPERATOR;
D O I
10.1016/j.na.2024.113558
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the eigenvalue problem for the fractional Laplacian (-Delta)(s), s is an element of (0, 1), in a bounded domain Omega with Dirichlet boundary condition. A recent result (see Fall et al., 2023) states that, under generic small perturbations of the coefficient of the equation or of the domain Omega , all the eigenvalues are simple. In this paper we give a condition for which a perturbation of the coefficient or of the domain preserves the multiplicity of a given eigenvalue. Also, in the case of an eigenvalue of multiplicity v = 2 we prove that the set of perturbations of the coefficients which preserve the multiplicity is a smooth manifold of codimension 2 in C-1(R-n) .
引用
收藏
页数:7
相关论文
共 50 条
  • [1] ON THE MULTIPLICITY OF THE EIGENVALUES OF THE LAPLACIAN
    BESSON, G
    LECTURE NOTES IN MATHEMATICS, 1988, 1339 : 32 - 53
  • [2] On the multiplicity of eigenvalues of the Laplacian on surfaces
    Hoffmann-Ostenhof, M
    Hoffmann-Ostenhof, T
    Nadirashvili, N
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1999, 17 (01) : 43 - 48
  • [3] On the multiplicity of laplacian eigenvalues of graphs
    Ji-Ming Guo
    Lin Feng
    Jiong-Ming Zhang
    Czechoslovak Mathematical Journal, 2010, 60 : 689 - 698
  • [4] A note on bifurcations from eigenvalues of the Dirichlet-Laplacian with arbitrary multiplicity
    Correia, Simao
    Figueira, Mario
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (03):
  • [5] A note on bifurcations from eigenvalues of the Dirichlet-Laplacian with arbitrary multiplicity
    Simão Correia
    Mário Figueira
    Nonlinear Differential Equations and Applications NoDEA, 2023, 30
  • [6] On the Multiplicity of Eigenvalues of the Laplacian on Surfaces
    M. Hoffmann-Ostenhof
    T. Hoffmann-Ostenhof
    N. Nadirashvili
    Annals of Global Analysis and Geometry, 1999, 17 : 43 - 48
  • [7] ON THE MULTIPLICITY OF LAPLACIAN EIGENVALUES OF GRAPHS
    Guo, Ji-Ming
    Feng, Lin
    Zhang, Jiong-Ming
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (03) : 689 - 698
  • [8] A note on switching eigenvalues under small perturbations
    Masioti, Marina
    S. N. Li-Wai-Suen, Connie
    A. Prendergast, Luke
    Shaker, Amanda
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (20) : 7311 - 7325
  • [9] On the multiplicity of Laplacian eigenvalues and Fiedler partitions
    Andreotti, Eleonora
    Remondini, Daniel
    Servizi, Graziano
    Bazzani, Armando
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 544 : 206 - 222
  • [10] On the multiplicity of Laplacian eigenvalues for unicyclic graphs
    Fei Wen
    Qiongxiang Huang
    Czechoslovak Mathematical Journal, 2022, 72 : 371 - 390