A note on the persistence of multiplicity of eigenvalues of fractional Laplacian under perturbations

被引:0
|
作者
Ghimenti, Marco [1 ]
Micheletti, Anna Maria [1 ]
Pistoia, Angela [2 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
[2] Univ Roma La Sapienza, Dipartimento SBAI, Via Antonio Scarpa 16, I-00161 Pisa, Italy
关键词
Eigenvalues; Fractional Laplacian; Generic properties; Simplicity; VARIATIONAL ELLIPTIC OPERATOR;
D O I
10.1016/j.na.2024.113558
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the eigenvalue problem for the fractional Laplacian (-Delta)(s), s is an element of (0, 1), in a bounded domain Omega with Dirichlet boundary condition. A recent result (see Fall et al., 2023) states that, under generic small perturbations of the coefficient of the equation or of the domain Omega , all the eigenvalues are simple. In this paper we give a condition for which a perturbation of the coefficient or of the domain preserves the multiplicity of a given eigenvalue. Also, in the case of an eigenvalue of multiplicity v = 2 we prove that the set of perturbations of the coefficients which preserve the multiplicity is a smooth manifold of codimension 2 in C-1(R-n) .
引用
收藏
页数:7
相关论文
共 50 条