CHY-graphs on a torus

被引:0
|
作者
Carlos Cardona
Humberto Gomez
机构
[1] National Tsing-Hua University,Physics Division, National Center for Theoretical Sciences
[2] Instituto de Fisica - Universidade de São Paulo,Facultad de Ciencias Basicas
[3] Universidad Santiago de Cali,undefined
关键词
Differential and Algebraic Geometry; Field Theories in Higher Dimensions; Scattering Amplitudes;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, we proposed a new approach using a punctured Elliptic curve in the CHY framework in order to compute one-loop scattering amplitudes. In this note, we further develop this approach by introducing a set of connectors, which become the main ingredient to build integrands on M1,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{M}}_{1,n} $$\end{document}, the moduli space of n-punctured Elliptic curves. As a particular application, we study the Φ3 bi-adjoint scalar theory. We propose a set of rules to construct integrands on M1,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{M}}_{1,n} $$\end{document} from Φ3 integrands on M0,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{M}}_{0,n} $$\end{document}, the moduli space of n-punctured spheres. We illustrate these rules by computing a variety of Φ3 one-loop Feynman diagrams. Conversely, we also provide another set of rules to compute the corresponding CHY-integrand on M1,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{M}}_{1,n} $$\end{document} by starting instead from a given Φ3 one-loop Feynman diagram. In addition, our results can easily be extended to higher loops.
引用
收藏
相关论文
共 50 条
  • [41] SPANNING PLANAR SUBGRAPHS OF GRAPHS IN THE TORUS AND KLEIN BOTTLE
    BRUNET, R
    ELLINGHAM, MN
    GAO, ZC
    METZLAR, A
    RICHTER, RB
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 65 (01) : 7 - 22
  • [42] Constructing the graphs that triangulate both the torus and the Klein bottle
    Lawrencenko, S
    Negami, S
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 77 (01) : 211 - 218
  • [43] On the domination number of 2-dimensional torus graphs
    Crevals, Simon
    Ostergard, Patric R. J.
    UTILITAS MATHEMATICA, 2018, 106 : 289 - 300
  • [44] Coloring of triangle-free graphs on the double torus
    Kral, Daniel
    Stehlik, Matej
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (02) : 541 - 553
  • [45] On the restricted matching extension of graphs on the torus and the Klein bottle
    Li, Qiuli
    Zhang, Heping
    DISCRETE MATHEMATICS, 2012, 312 (16) : 2450 - 2456
  • [46] Skein algebras of the solid torus and symmetric spatial graphs
    Chbili, Nafaa
    FUNDAMENTA MATHEMATICAE, 2006, 190 : 1 - 10
  • [47] Fast diffusion load balancing algorithms on torus graphs
    Karagiorgos, Gregory
    Missirlis, Nikolaos M.
    Tzaferis, Filippos
    EURO-PAR 2006 PARALLEL PROCESSING, 2006, 4128 : 222 - 231
  • [48] Permutation in the CHY formulation
    Huang, Rijun
    Teng, Fei
    Feng, Bo
    NUCLEAR PHYSICS B, 2018, 932 : 323 - 369
  • [49] Transmuting CHY formulae
    Max Bollmann
    Livia Ferro
    Journal of High Energy Physics, 2019
  • [50] Transmuting CHY formulae
    Bollmann, Max
    Ferro, Livia
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, (01):