CHY-graphs on a torus

被引:0
|
作者
Carlos Cardona
Humberto Gomez
机构
[1] National Tsing-Hua University,Physics Division, National Center for Theoretical Sciences
[2] Instituto de Fisica - Universidade de São Paulo,Facultad de Ciencias Basicas
[3] Universidad Santiago de Cali,undefined
关键词
Differential and Algebraic Geometry; Field Theories in Higher Dimensions; Scattering Amplitudes;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, we proposed a new approach using a punctured Elliptic curve in the CHY framework in order to compute one-loop scattering amplitudes. In this note, we further develop this approach by introducing a set of connectors, which become the main ingredient to build integrands on M1,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{M}}_{1,n} $$\end{document}, the moduli space of n-punctured Elliptic curves. As a particular application, we study the Φ3 bi-adjoint scalar theory. We propose a set of rules to construct integrands on M1,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{M}}_{1,n} $$\end{document} from Φ3 integrands on M0,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{M}}_{0,n} $$\end{document}, the moduli space of n-punctured spheres. We illustrate these rules by computing a variety of Φ3 one-loop Feynman diagrams. Conversely, we also provide another set of rules to compute the corresponding CHY-integrand on M1,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{M}}_{1,n} $$\end{document} by starting instead from a given Φ3 one-loop Feynman diagram. In addition, our results can easily be extended to higher loops.
引用
收藏
相关论文
共 50 条
  • [21] A Sufficient Condition for Pfaffian Graphs on the Torus
    Xing Feng
    Lianzhu Zhang
    Mingzu Zhang
    Graphs and Combinatorics, 2017, 33 : 1249 - 1260
  • [22] MOVE-REDUCED GRAPHS ON A TORUS
    Galashin, Pavel
    George, Terrence
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (06) : 4055 - 4099
  • [23] A Sufficient Condition for Pfaffian Graphs on the Torus
    Feng, Xing
    Zhang, Lianzhu
    Zhang, Mingzu
    GRAPHS AND COMBINATORICS, 2017, 33 (05) : 1249 - 1260
  • [24] Symmetries of hexagonal molecular graphs on the torus
    Marusic, D
    Pisanski, T
    CROATICA CHEMICA ACTA, 2000, 73 (04) : 969 - 981
  • [25] Drawing 4-Pfaffian graphs on the torus
    Norine, Serguei
    COMBINATORICA, 2009, 29 (01) : 109 - 119
  • [26] EDGE-DISJOINT CIRCUITS IN GRAPHS ON THE TORUS
    FRANK, A
    SCHRIJVER, A
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1992, 55 (01) : 9 - 17
  • [27] Drawing 4-Pfaffian graphs on the torus
    Serguei Norine
    Combinatorica, 2009, 29 : 109 - 119
  • [28] THE RIGIDITY OF PERIODIC FRAMEWORKS AS GRAPHS ON A FIXED TORUS
    Ross, Elissa
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2014, 9 (01) : 11 - 45
  • [29] Hexagonal and pruned torus networks as Cayley graphs
    Xiao, WJ
    Parhami, B
    CIC '04: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN COMPUTING, 2004, : 107 - 112
  • [30] 5-factor-critical graphs on the torus
    Li, Qiuli
    Zhang, Heping
    ARS COMBINATORIA, 2014, 115 : 357 - 366