CHY-graphs on a torus

被引:0
|
作者
Carlos Cardona
Humberto Gomez
机构
[1] National Tsing-Hua University,Physics Division, National Center for Theoretical Sciences
[2] Instituto de Fisica - Universidade de São Paulo,Facultad de Ciencias Basicas
[3] Universidad Santiago de Cali,undefined
关键词
Differential and Algebraic Geometry; Field Theories in Higher Dimensions; Scattering Amplitudes;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, we proposed a new approach using a punctured Elliptic curve in the CHY framework in order to compute one-loop scattering amplitudes. In this note, we further develop this approach by introducing a set of connectors, which become the main ingredient to build integrands on M1,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{M}}_{1,n} $$\end{document}, the moduli space of n-punctured Elliptic curves. As a particular application, we study the Φ3 bi-adjoint scalar theory. We propose a set of rules to construct integrands on M1,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{M}}_{1,n} $$\end{document} from Φ3 integrands on M0,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{M}}_{0,n} $$\end{document}, the moduli space of n-punctured spheres. We illustrate these rules by computing a variety of Φ3 one-loop Feynman diagrams. Conversely, we also provide another set of rules to compute the corresponding CHY-integrand on M1,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{M}}_{1,n} $$\end{document} by starting instead from a given Φ3 one-loop Feynman diagram. In addition, our results can easily be extended to higher loops.
引用
收藏
相关论文
共 50 条
  • [31] Enumerating admissible graphs on a 3-torus
    tWoord, AN
    AMERICAN MATHEMATICAL MONTHLY, 1996, 103 (09): : 810 - 811
  • [32] Obstructions of Connectivity Two for Embedding Graphs into the Torus
    Mohar, Bojan
    Skoda, Petr
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (06): : 1327 - 1357
  • [33] On -resonance of grid graphs on the plane, torus and cylinder
    Liu, Saihua
    Ou, Jianping
    Lin, Youchuang
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2014, 52 (07) : 1807 - 1816
  • [34] PHASE TRANSITION IN RANDOM DISTANCE GRAPHS ON THE TORUS
    Ajazi, Fioralba
    Napolitano, George M.
    Turova, Tatyana
    JOURNAL OF APPLIED PROBABILITY, 2017, 54 (04) : 1278 - 1294
  • [35] TORUS GRAPHS FOR MULTIVARIATE PHASE COUPLING ANALYSIS
    Klein, Natalie
    Orellana, Josue
    Brincat, Scott L.
    Miller, Earl K.
    Kass, Robert E.
    ANNALS OF APPLIED STATISTICS, 2020, 14 (02): : 635 - 660
  • [37] Collision processes of CHy and CHy+ hydrocarbons with plasma electrons and protons
    Janev, RK
    Reiter, D
    PHYSICS OF PLASMAS, 2002, 9 (09) : 4071 - 4081
  • [38] On Leaved Dipole Rose Spherical, Cylindrical and Torus Graphs
    Shakir, Qays R.
    ENGINEERING LETTERS, 2023, 31 (02) : 789 - 793
  • [39] DNA origami and unknotted A-trails in torus graphs
    Morse, Ada
    Adkisson, William
    Greene, Jessica
    Perry, David
    Smith, Brenna
    Ellis-Monaghan, Jo
    Pangborn, Greta
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2020, 29 (07)
  • [40] There exist no minimally knotted planar spatial graphs on the torus
    Barthel, Senja
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2015, 24 (07)