CHY-graphs on a torus

被引:0
|
作者
Carlos Cardona
Humberto Gomez
机构
[1] National Tsing-Hua University,Physics Division, National Center for Theoretical Sciences
[2] Instituto de Fisica - Universidade de São Paulo,Facultad de Ciencias Basicas
[3] Universidad Santiago de Cali,undefined
关键词
Differential and Algebraic Geometry; Field Theories in Higher Dimensions; Scattering Amplitudes;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, we proposed a new approach using a punctured Elliptic curve in the CHY framework in order to compute one-loop scattering amplitudes. In this note, we further develop this approach by introducing a set of connectors, which become the main ingredient to build integrands on M1,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{M}}_{1,n} $$\end{document}, the moduli space of n-punctured Elliptic curves. As a particular application, we study the Φ3 bi-adjoint scalar theory. We propose a set of rules to construct integrands on M1,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{M}}_{1,n} $$\end{document} from Φ3 integrands on M0,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{M}}_{0,n} $$\end{document}, the moduli space of n-punctured spheres. We illustrate these rules by computing a variety of Φ3 one-loop Feynman diagrams. Conversely, we also provide another set of rules to compute the corresponding CHY-integrand on M1,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{M}}_{1,n} $$\end{document} by starting instead from a given Φ3 one-loop Feynman diagram. In addition, our results can easily be extended to higher loops.
引用
收藏
相关论文
共 50 条
  • [1] CHY-graphs on a torus
    Cardona, Carlos
    Gomez, Humberto
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (10): : 1 - 34
  • [2] Off-shell CHY amplitudes and Feynman graphs
    Dolan, Louise
    Goddard, Peter
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (04)
  • [3] THE BICHROMATICITY OF CYLINDER GRAPHS AND TORUS GRAPHS
    PRITIKIN, D
    JOURNAL OF GRAPH THEORY, 1987, 11 (01) : 101 - 111
  • [4] Drawing graphs on the torus
    Kocay, W
    Neilson, D
    Szypowski, R
    ARS COMBINATORIA, 2001, 59 : 259 - 277
  • [5] Pfaffian graphs embedding on the torus
    ZHANG LianZhu
    WANG Yan
    LU FuLiang
    Science China(Mathematics), 2013, 56 (09) : 1957 - 1964
  • [6] Pfaffian graphs embedding on the torus
    Zhang LianZhu
    Wang Yan
    Lu FuLiang
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (09) : 1957 - 1964
  • [7] GRID MINORS OF GRAPHS ON THE TORUS
    DEGRAAF, M
    SCHRIJVER, A
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 61 (01) : 57 - 62
  • [8] REGULAR EMBEDDINGS OF GRAPHS ON TORUS
    XUONG, NH
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (16): : 683 - 685
  • [9] CIRCUITS IN GRAPHS EMBEDDED ON THE TORUS
    SCHRIJVER, A
    DISCRETE MATHEMATICS, 1992, 106 : 415 - 433
  • [10] Pfaffian graphs embedding on the torus
    LianZhu Zhang
    Yan Wang
    FuLiang Lu
    Science China Mathematics, 2013, 56 : 1957 - 1964