Interaction dynamics of nonautonomous bright and dark solitons of the discrete (2 + 1)-dimensional Ablowitz–Ladik equation

被引:0
|
作者
Li Li
Fajun Yu
机构
[1] Shenyang Normal University,School of Mathematics and Systematic Sciences
[2] Shanghai Maritime University,College of Arts and Sciences
来源
Nonlinear Dynamics | 2021年 / 106卷
关键词
Soliton interaction; Bright dark solution; 2 + 1-dimensional Ablowitz–Ladik equation;
D O I
暂无
中图分类号
学科分类号
摘要
The non-autonomous discrete bright–dark soliton solutions(NDBDSSs) of the 2 + 1-dimensional Ablowitz–Ladik (AL) equation are derived. We analyze the dynamic behaviors and interactions of the obtained 2 + 1-dimensional NDBDSSs. In this paper, we present two kinds of different methods to control the 2 + 1-dimensional NDBDSSs. In first method, we can only control the wave propagations through the spatial part, since the time function has not effect in the phase part. In second method, we can control the wave propagations through both the spatial and temporal parts. The different propagation phenomena can also be produced through two kinds of managements. We obtain the novel “π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}”-shape non-autonomous discrete bright soliton solution(NDBSS), the novel “⋏\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\curlywedge $$\end{document}”-shape non-autonomous discrete dark soliton solution(NDDSS) and their interaction behaviors. The novel behaviors are considered analytically, which can be applied to the electrical and optical fields.
引用
收藏
页码:855 / 865
页数:10
相关论文
共 50 条
  • [31] Dynamics of the optical solitons for a (2+1)-dimensional nonlinear Schrodinger equation
    Zuo, Da-Wei
    Jia, Hui-Xian
    Shan, Dong-Ming
    SUPERLATTICES AND MICROSTRUCTURES, 2017, 101 : 522 - 528
  • [32] Bright and dark optical solitons for (3+1)-dimensional hyperbolic nonlinear Schrodinger equation using a variety of distinct schemes
    Wazwaz, Abdul-Majid
    Abu Hammad, Ma'mon
    El-Tantawy, S. A.
    OPTIK, 2022, 270
  • [33] Abundant multilayer network model solutions and bright-dark solitons for a (3 + 1)-dimensional p-gBLMP equation
    Litao Gai
    Wen-Xiu Ma
    Bilige Sudao
    Nonlinear Dynamics, 2021, 106 : 867 - 877
  • [34] Analysis of the(3+1)-Dimensional Fractional Kadomtsev-Petviashvili-Boussinesq Equation: Solitary, Bright, Singular, and Dark Solitons
    Seadway, Aly R.
    Ali, Asghar
    Bekir, Ahmet
    Cevikel, Adem C.
    FRACTAL AND FRACTIONAL, 2024, 8 (09)
  • [35] Bright and dark optical solitons for (3 + 1)-dimensional hyperbolic nonlinear Schrödinger equation using a variety of distinct schemes
    Wazwaz, Abdul-Majid
    Abu Hammad, Ma'mon
    El-Tantawy, S.A.
    Optik, 2022, 270
  • [36] Diversity of interaction phenomenon, cross-kink wave, and the bright-dark solitons for the (3+1)-dimensional Kadomtsev-Petviashvili-Boussinesq-like equation
    Li, MeiYu
    Bilige, Sudao
    Zhang, Run-Fa
    Han, Lihui
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2022, 23 (3-4) : 623 - 634
  • [37] Dynamics Investigation and Solitons Formation for(2+1) -Dimensional Zoomeron Equation and Foam Drainage Equation
    Batool, Fiza
    Akram, Ghazala
    Sadaf, Maasoomah
    Mehmood, Umair
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (02) : 628 - 645
  • [38] Dynamics of optical solitons in the (2+1)-dimensional chiral nonlinear Schrodinger equation
    Tetchoka-Manemo, Cedric
    Tala-Tebue, Eric
    Inc, Mustafa
    Ejuh, Geh Wilson
    Kenfack-Jiotsa, Aurelien
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (05)
  • [39] Abundant multilayer network model solutions and bright-dark solitons for a (3+1)-dimensional p-gBLMP equation
    Gai, Litao
    Ma, Wen-Xiu
    Sudao, Bilige
    NONLINEAR DYNAMICS, 2021, 106 (01) : 867 - 877
  • [40] Solitons in a generalized (2+1)-dimensional Ablowitz-Kaup-Newell-Segur system
    Zheng, CL
    Zhang, JF
    Wu, FM
    Sheng, ZM
    Chen, LQ
    CHINESE PHYSICS, 2003, 12 (05): : 472 - 478