Interaction dynamics of nonautonomous bright and dark solitons of the discrete (2 + 1)-dimensional Ablowitz–Ladik equation

被引:0
|
作者
Li Li
Fajun Yu
机构
[1] Shenyang Normal University,School of Mathematics and Systematic Sciences
[2] Shanghai Maritime University,College of Arts and Sciences
来源
Nonlinear Dynamics | 2021年 / 106卷
关键词
Soliton interaction; Bright dark solution; 2 + 1-dimensional Ablowitz–Ladik equation;
D O I
暂无
中图分类号
学科分类号
摘要
The non-autonomous discrete bright–dark soliton solutions(NDBDSSs) of the 2 + 1-dimensional Ablowitz–Ladik (AL) equation are derived. We analyze the dynamic behaviors and interactions of the obtained 2 + 1-dimensional NDBDSSs. In this paper, we present two kinds of different methods to control the 2 + 1-dimensional NDBDSSs. In first method, we can only control the wave propagations through the spatial part, since the time function has not effect in the phase part. In second method, we can control the wave propagations through both the spatial and temporal parts. The different propagation phenomena can also be produced through two kinds of managements. We obtain the novel “π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}”-shape non-autonomous discrete bright soliton solution(NDBSS), the novel “⋏\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\curlywedge $$\end{document}”-shape non-autonomous discrete dark soliton solution(NDDSS) and their interaction behaviors. The novel behaviors are considered analytically, which can be applied to the electrical and optical fields.
引用
收藏
页码:855 / 865
页数:10
相关论文
共 50 条
  • [21] Complex solitons in the conformable (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation
    Gao, Wei
    Yell, Gulnur
    Baskonus, Haci Mehmet
    Cattani, Carlo
    AIMS MATHEMATICS, 2020, 5 (01): : 507 - 521
  • [22] Bright and dark optical solitons for a new (3+1)-dimensional nonlinear Schrödinger equation
    Wazwaz, Abdul-Majid
    Mehanna, Mona
    OPTIK, 2021, 241
  • [23] Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo–Miwa equation
    Run-Fa Zhang
    Ming-Chu Li
    Hui-Min Yin
    Nonlinear Dynamics, 2021, 103 : 1071 - 1079
  • [24] Dark solitons interaction for a (2+1)-dimensional nonlinear Schrodinger equation in the Heisenberg ferromagnetic spin chain
    Zhao, Xue-Hui
    Tian, Bo
    Liu, De-Yin
    Wu, Xiao-Yu
    Chai, Jun
    Guo, Yong-Jiang
    SUPERLATTICES AND MICROSTRUCTURES, 2016, 100 : 587 - 595
  • [25] Lump waves, bright-dark solitons and some novel interaction solutions in (3+1)-dimensional shallow water wave equation
    Lei, Ruoyang
    Tian, Lin
    Ma, Zhimin
    PHYSICA SCRIPTA, 2024, 99 (01)
  • [26] Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo-Miwa equation
    Zhang, Run-Fa
    Li, Ming-Chu
    Yin, Hui-Min
    NONLINEAR DYNAMICS, 2021, 103 (01) : 1071 - 1079
  • [27] Bright and dark optical vortex solitons of (3+1)-dimensional spatially modulated quintic nonlinear Schrodinger equation
    Xu, Yun-Jie
    OPTIK, 2017, 147 : 1 - 5
  • [28] Bright and dark optical solitons for (3+1)-dimensional Schrodinger equation with cubic-quintic-septic nonlinearities
    Wazwaz, Abdul-Majid
    OPTIK, 2021, 225
  • [29] BRIGHT AND DARK SOLITONS IN A (2+1)-DIMENSIONAL SPIN-1 BOSE-EINSTEIN CONDENSATES
    Li, Nan
    Chen, Quan
    Triki, Houria
    Liu, Feiyan
    Sun, Yunzhou
    Xu, Siliu
    Zhou, Qin
    UKRAINIAN JOURNAL OF PHYSICAL OPTICS, 2024, 25 (05) : S1060 - S1074
  • [30] Diverse solitons and interaction solutions for the (2+1)-dimensional CDGKS equation
    Zhuang, Jian-Hong
    Liu, Yaqing
    Chen, Xin
    Wu, Juan-Juan
    Wen, Xiao-Yong
    MODERN PHYSICS LETTERS B, 2019, 33 (16):