Interaction dynamics of nonautonomous bright and dark solitons of the discrete (2 + 1)-dimensional Ablowitz–Ladik equation

被引:0
|
作者
Li Li
Fajun Yu
机构
[1] Shenyang Normal University,School of Mathematics and Systematic Sciences
[2] Shanghai Maritime University,College of Arts and Sciences
来源
Nonlinear Dynamics | 2021年 / 106卷
关键词
Soliton interaction; Bright dark solution; 2 + 1-dimensional Ablowitz–Ladik equation;
D O I
暂无
中图分类号
学科分类号
摘要
The non-autonomous discrete bright–dark soliton solutions(NDBDSSs) of the 2 + 1-dimensional Ablowitz–Ladik (AL) equation are derived. We analyze the dynamic behaviors and interactions of the obtained 2 + 1-dimensional NDBDSSs. In this paper, we present two kinds of different methods to control the 2 + 1-dimensional NDBDSSs. In first method, we can only control the wave propagations through the spatial part, since the time function has not effect in the phase part. In second method, we can control the wave propagations through both the spatial and temporal parts. The different propagation phenomena can also be produced through two kinds of managements. We obtain the novel “π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}”-shape non-autonomous discrete bright soliton solution(NDBSS), the novel “⋏\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\curlywedge $$\end{document}”-shape non-autonomous discrete dark soliton solution(NDDSS) and their interaction behaviors. The novel behaviors are considered analytically, which can be applied to the electrical and optical fields.
引用
收藏
页码:855 / 865
页数:10
相关论文
共 50 条
  • [11] Rogue waves for a discrete (2+1)-dimensional Ablowitz-Ladik equation in the nonlinear optics and Bose-Einstein condensation
    Wu, Xiao-Yu
    Tian, Bo
    Chai, Han-Peng
    Du, Zhong
    SUPERLATTICES AND MICROSTRUCTURES, 2018, 115 : 130 - 139
  • [12] Modulational instability and dynamics of multi-rogue wave solutions for the discrete Ablowitz-Ladik equation
    Wen, Xiao-Yong
    Yan, Zhenya
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (07)
  • [13] Bright and dark envelope optical solitons for a (2+1)-dimensional cubic nonlinear Schrodinger equation
    Wazwaz, Abdul-Majid
    Alhejaili, Weaam
    El-Tantawy, S. A.
    OPTIK, 2022, 265
  • [14] On a (2+1)-dimensional generalization of the Ablowitz-Ladik lattice and a discrete Davey-Stewartson system
    Tsuchida, Takayuki
    Dimakis, Aristophanes
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (32)
  • [15] Radial solitons and modulational instability in two-dimensional Ablowitz-Ladik equation for certain applications in nonlinear optics
    Djoufack, Z. I.
    Tala-Tebue, E.
    Nguenang, J. P.
    Kenfack-Jiotsa, A.
    OPTIK, 2021, 225
  • [16] Dynamics of anti-dark and dark solitons in (2+1)-dimensional generalized nonlinear Schrodinger equation
    Nistazakis, HE
    Frantzeskakis, DJ
    Balourdos, PS
    Tsigopoulos, A
    Malomed, BA
    PHYSICS LETTERS A, 2000, 278 (1-2) : 68 - 76
  • [17] Dark-bright discrete solitons: A numerical study of existence, stability and dynamics
    Alvarez, A.
    Cuevas, J.
    Romero, F. R.
    Kevrekidis, P. G.
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (08) : 767 - 778
  • [19] Bright and dark solitons for a variable-coefficient (2+1) dimensional Heisenberg ferromagnetic spin chain equation
    Huang, Qian-Min
    Gao, Yi-Tian
    Jia, Shu-Liang
    OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (04)
  • [20] Dynamics of nonautonomous discrete rogue wave solutions for an Ablowitz-Musslimani equation with PT-symmetric potential
    Yu, Fajun
    CHAOS, 2017, 27 (02)