Construction of asymmetric Chudnovsky-type algorithms for multiplication in finite fields

被引:0
|
作者
Stéphane Ballet
Nicolas Baudru
Alexis Bonnecaze
Mila Tukumuli
机构
[1] Aix Marseille Univ,
[2] CNRS,undefined
[3] I2M,undefined
[4] Aix Marseille Univ,undefined
[5] CNRS,undefined
[6] LIS,undefined
来源
Designs, Codes and Cryptography | 2022年 / 90卷
关键词
Effective multiplication algorithm; Interpolation on algebraic curve; Finite field; 14Q20;
D O I
暂无
中图分类号
学科分类号
摘要
The original algorithm of D.V. Chudnovsky and G.V. Chudnovsky for the multiplication in extensions of finite fields provides a bilinear complexity which is uniformly linear with respect to the degree of the extension. Recently, Randriambololona generalized the method, allowing asymmetry in the interpolation procedure. The aim of this article is to make effective this method. We first make explicit this generalization in order to construct the underlying asymmetric algorithms. Then, we propose a generic strategy to construct these algorithms using places of higher degrees and without derivated evaluation. Finally, we provide examples of three multiplication algorithms along with their Magma implementation: in F1613\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{16^{13}}$$\end{document} using only rational places, in F45\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{4^{5}}$$\end{document} using also places of degree two, and in F25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2^{5}}$$\end{document} using also places of degree four.
引用
收藏
页码:2783 / 2811
页数:28
相关论文
共 50 条
  • [41] Asymptotic Bound for Multiplication Complexity in the Extensions of Small Finite Fields
    Cascudo, Ignacio
    Cramer, Ronald
    Xing, Chaoping
    Yang, An
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (07) : 4930 - 4935
  • [42] Reduction-Free Multiplication for Finite Fields and Polynomial Rings
    Madrigal, Samira Carolina Oliva
    Saldamli, Gökay
    Li, Chen
    Geng, Yue
    Tian, Jing
    Wang, Zhongfeng
    Koc, Cetin Kaya
    ARITHMETIC OF FINITE FIELDS, WAIFI 2022, 2023, 13638 : 53 - 78
  • [43] On some bounds for symmetric tensor rank of multiplication in finite fields
    Ballet, Stephane
    Pieltant, Julia
    Rambaud, Matthieu
    Sijsling, Jeroen
    ARITHMETIC, GEOMETRY, CRYPTOGRAPHY AND CODING THEORY, 2017, 686 : 93 - 121
  • [44] Matrix multiplication over small finite fields on MIMD architectures
    Staszewski, R
    WORKSHOP ON HIGH PERFORMANCE COMPUTING AND GIGABIT LOCAL AREA NETWORKS, 1997, 226 : 183 - 201
  • [45] Design of a Low-Latency Multiplication Algorithm for Finite Fields
    Kim, Kee-Won
    Kim, Seung-Hoon
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2016, PT II, 2016, 9713 : 271 - 278
  • [46] A lower bound on the complexity of polynomial multiplication over finite fields
    Kaminski, M
    STACS 2005, PROCEEDINGS, 2005, 3404 : 485 - 495
  • [47] Counting prime divisors on elliptic curves and multiplication in finite fields
    Shokrollahi, MA
    CODING THEORY AND CRYPTOGRAPHY: FROM ENIGMA AND GEHEIMSCHREIBER TO QUANTUM THEORY, 2000, : 180 - 201
  • [48] A lower bound on the complexity of polynomial multiplication over finite fields
    Kaminski, M
    SIAM JOURNAL ON COMPUTING, 2005, 34 (04) : 960 - 992
  • [49] Fast multiplication in finite fields GF(2N)
    Silverman, JH
    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS, 1999, 1717 : 122 - 134
  • [50] MULTIPLICATIVE COMPLEXITY OF POLYNOMIAL MULTIPLICATION OVER FINITE-FIELDS
    KAMINSKI, M
    BSHOUTY, NH
    JOURNAL OF THE ACM, 1989, 36 (01) : 150 - 170