Construction of asymmetric Chudnovsky-type algorithms for multiplication in finite fields

被引:0
|
作者
Stéphane Ballet
Nicolas Baudru
Alexis Bonnecaze
Mila Tukumuli
机构
[1] Aix Marseille Univ,
[2] CNRS,undefined
[3] I2M,undefined
[4] Aix Marseille Univ,undefined
[5] CNRS,undefined
[6] LIS,undefined
来源
Designs, Codes and Cryptography | 2022年 / 90卷
关键词
Effective multiplication algorithm; Interpolation on algebraic curve; Finite field; 14Q20;
D O I
暂无
中图分类号
学科分类号
摘要
The original algorithm of D.V. Chudnovsky and G.V. Chudnovsky for the multiplication in extensions of finite fields provides a bilinear complexity which is uniformly linear with respect to the degree of the extension. Recently, Randriambololona generalized the method, allowing asymmetry in the interpolation procedure. The aim of this article is to make effective this method. We first make explicit this generalization in order to construct the underlying asymmetric algorithms. Then, we propose a generic strategy to construct these algorithms using places of higher degrees and without derivated evaluation. Finally, we provide examples of three multiplication algorithms along with their Magma implementation: in F1613\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{16^{13}}$$\end{document} using only rational places, in F45\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{4^{5}}$$\end{document} using also places of degree two, and in F25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2^{5}}$$\end{document} using also places of degree four.
引用
收藏
页码:2783 / 2811
页数:28
相关论文
共 50 条