Construction of asymmetric Chudnovsky-type algorithms for multiplication in finite fields

被引:0
|
作者
Stéphane Ballet
Nicolas Baudru
Alexis Bonnecaze
Mila Tukumuli
机构
[1] Aix Marseille Univ,
[2] CNRS,undefined
[3] I2M,undefined
[4] Aix Marseille Univ,undefined
[5] CNRS,undefined
[6] LIS,undefined
来源
Designs, Codes and Cryptography | 2022年 / 90卷
关键词
Effective multiplication algorithm; Interpolation on algebraic curve; Finite field; 14Q20;
D O I
暂无
中图分类号
学科分类号
摘要
The original algorithm of D.V. Chudnovsky and G.V. Chudnovsky for the multiplication in extensions of finite fields provides a bilinear complexity which is uniformly linear with respect to the degree of the extension. Recently, Randriambololona generalized the method, allowing asymmetry in the interpolation procedure. The aim of this article is to make effective this method. We first make explicit this generalization in order to construct the underlying asymmetric algorithms. Then, we propose a generic strategy to construct these algorithms using places of higher degrees and without derivated evaluation. Finally, we provide examples of three multiplication algorithms along with their Magma implementation: in F1613\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{16^{13}}$$\end{document} using only rational places, in F45\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{4^{5}}$$\end{document} using also places of degree two, and in F25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2^{5}}$$\end{document} using also places of degree four.
引用
收藏
页码:2783 / 2811
页数:28
相关论文
共 50 条
  • [31] On the Bounds of the Bilinear Complexity of Multiplication in Some Finite Fields
    Stéphane Ballet
    Jean Chaumine
    Applicable Algebra in Engineering, Communication and Computing, 2004, 15 : 205 - 221
  • [32] CURVES WITH MANY POINTS AND MULTIPLICATION IN FINITE-FIELDS
    SHPARLINSKI, IE
    TSFASMAN, MA
    VLADUT, SG
    LECTURE NOTES IN MATHEMATICS, 1992, 1518 : 145 - 169
  • [33] PROBABILISTIC ALGORITHMS IN FINITE-FIELDS
    RABIN, MO
    SIAM JOURNAL ON COMPUTING, 1980, 9 (02) : 273 - 280
  • [34] New Efficient Algorithms for Multiplication Over Fields of Characteristic Three
    Murat Cenk
    Farhad Haghighi Zadeh
    M. Anwar Hasan
    Journal of Signal Processing Systems, 2018, 90 : 285 - 294
  • [35] New Efficient Algorithms for Multiplication Over Fields of Characteristic Three
    Cenk, Murat
    Zadeh, Farhad Haghighi
    Hasan, M. Anwar
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2018, 90 (03): : 285 - 294
  • [36] Small discriminants of complex multiplication fields of elliptic curves over finite fields
    Shparlinski, Igor E.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (02) : 381 - 388
  • [37] Small discriminants of complex multiplication fields of elliptic curves over finite fields
    Igor E. Shparlinski
    Czechoslovak Mathematical Journal, 2015, 65 : 381 - 388
  • [38] Generic construction algorithms for symmetric and asymmetric RVLCs
    Lin, CW
    Chuang, VJ
    Wu, JL
    ICCS 2002: 8TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, 2002, : 968 - 972
  • [39] A construction of curves over finite fields
    Garcia, A
    Quoos, L
    ACTA ARITHMETICA, 2001, 98 (02) : 181 - 195
  • [40] REDEI ACTIONS ON FINITE FIELDS AND MULTIPLICATION MAP IN CYCLIC GROUP
    Qureshi, Claudio
    Panario, Daniel
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (03) : 1486 - 1503