Construction of asymmetric Chudnovsky-type algorithms for multiplication in finite fields

被引:0
|
作者
Stéphane Ballet
Nicolas Baudru
Alexis Bonnecaze
Mila Tukumuli
机构
[1] Aix Marseille Univ,
[2] CNRS,undefined
[3] I2M,undefined
[4] Aix Marseille Univ,undefined
[5] CNRS,undefined
[6] LIS,undefined
来源
Designs, Codes and Cryptography | 2022年 / 90卷
关键词
Effective multiplication algorithm; Interpolation on algebraic curve; Finite field; 14Q20;
D O I
暂无
中图分类号
学科分类号
摘要
The original algorithm of D.V. Chudnovsky and G.V. Chudnovsky for the multiplication in extensions of finite fields provides a bilinear complexity which is uniformly linear with respect to the degree of the extension. Recently, Randriambololona generalized the method, allowing asymmetry in the interpolation procedure. The aim of this article is to make effective this method. We first make explicit this generalization in order to construct the underlying asymmetric algorithms. Then, we propose a generic strategy to construct these algorithms using places of higher degrees and without derivated evaluation. Finally, we provide examples of three multiplication algorithms along with their Magma implementation: in F1613\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{16^{13}}$$\end{document} using only rational places, in F45\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{4^{5}}$$\end{document} using also places of degree two, and in F25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2^{5}}$$\end{document} using also places of degree four.
引用
收藏
页码:2783 / 2811
页数:28
相关论文
共 50 条
  • [1] Construction of asymmetric Chudnovsky-type algorithms for multiplication in finite fields
    Ballet, Stephane
    Baudru, Nicolas
    Bonnecaze, Alexis
    Tukumuli, Mila
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (12) : 2783 - 2811
  • [2] On the construction of elliptic Chudnovsky-type algorithms for multiplication in large extensions of finite fields
    Ballet, Stephane
    Bonnecaze, Alexis
    Tukumuli, Mila
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (01)
  • [3] Polynomial Constructions of Chudnovsky-type Algorithms for Multiplication in Finite Fields with Linear Bilinear Complexity
    Ballet, Ephane
    Bonnecaze, Alexis
    Pacifico, Bastien
    ARITHMETIC OF FINITE FIELDS, WAIFI 2022, 2023, 13638 : 35 - 52
  • [4] On the construction of the asymmetric Chudnovsky multiplication algorithm in finite fields without derivated evaluation
    Ballet, Stephane
    Baudru, Nicolas
    Bonnecaze, Alexis
    Tukumuli, Mila
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (07) : 729 - 733
  • [5] An improvement of the construction of the DV and GV Chudnovsky algorithm for multiplication in finite fields
    Ballet, S
    THEORETICAL COMPUTER SCIENCE, 2006, 352 (1-3) : 293 - 305
  • [6] Optimization of the scalar complexity of Chudnovsky2 multiplication algorithms in finite fields
    Ballet, Stephane
    Bonnecaze, Alexis
    Dang, Thanh-Hung
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2021, 13 (04): : 495 - 517
  • [7] Optimization of the scalar complexity of Chudnovsky2 multiplication algorithms in finite fields
    Stéphane Ballet
    Alexis Bonnecaze
    Thanh-Hung Dang
    Cryptography and Communications, 2021, 13 : 495 - 517
  • [8] ARITHMETIC IN FINITE FIELDS BASED ON THE CHUDNOVSKY-CHUDNOVSKY MULTIPLICATION ALGORITHM
    Atighehchi, Kevin
    Ballet, Stephane
    Bonnecaze, Alexis
    Rolland, Robert
    MATHEMATICS OF COMPUTATION, 2017, 86 (308) : 2975 - 3000
  • [9] Finding Optimal Chudnovsky-Chudnovsky Multiplication Algorithms
    Rambaud, Matthieu
    ARITHMETIC OF FINITE FIELDS (WAIFI 2014), 2015, 9061 : 45 - 60
  • [10] Effective arithmetic in finite fields based on Chudnovsky's multiplication algorithm
    Atighehchi, Kevin
    Ballet, Stephane
    Bonnecaze, Alexis
    Rolland, Robert
    COMPTES RENDUS MATHEMATIQUE, 2016, 354 (02) : 137 - 141