Idempotent generated algebras and Boolean powers of commutative rings

被引:0
|
作者
Guram Bezhanishvili
Vincenzo Marra
Patrick J. Morandi
Bruce Olberding
机构
[1] New Mexico State University,Department of Mathematical Sciences
[2] Università degli Studi di Milano,Dipartimento di Matematica “Federigo Enriques”
来源
Algebra universalis | 2015年 / 73卷
关键词
algebra over a commutative ring; idempotent generated algebra; Boolean power; Stone space; Baer ring; -ring; Specker ; -group; Primary: 16G30; Secondary: 06E15; 54H10; 06F25;
D O I
暂无
中图分类号
学科分类号
摘要
A Boolean power S of a commutative ring R has the structure of a commutative R-algebra, and with respect to this structure, each element of S can be written uniquely as an R-linear combination of orthogonal idempotents so that the sum of the idempotents is 1 and their coefficients are distinct. In order to formalize this decomposition property, we introduce the concept of a Specker R-algebra, and we prove that the Boolean powers of R are up to isomorphism precisely the Specker Ralgebras. We also show that these algebras are characterized in terms of a functorial construction having roots in the work of Bergman and Rota. When R is indecomposable, we prove that S is a Specker R-algebra iff S is a projective R-module, thus strengthening a theorem of Bergman, and when R is a domain, we show that S is a Specker R-algebra iff S is a torsion-free R-module.
引用
收藏
页码:183 / 204
页数:21
相关论文
共 50 条
  • [31] Boolean sets, skew Boolean algebras and a non-commutative Stone duality
    Kudryavtseva, Ganna
    Lawson, Mark V.
    ALGEBRA UNIVERSALIS, 2016, 75 (01) : 1 - 19
  • [32] ALGEBRAS OVER ABSOLUTELY FLAT COMMUTATIVE RINGS
    WEHLEN, JA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 196 (SEP) : 149 - 160
  • [33] AUTOMORPHISMS OF MATRIX ALGEBRAS OVER COMMUTATIVE RINGS
    ISAACS, IM
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1980, 31 (JUN) : 215 - 231
  • [34] On homology of Lie algebras over commutative rings
    Ivanov, Sergei O.
    Pavutnitskiy, Fedor
    Romanovskii, Vladislav
    Zaikovskii, Anatolii
    JOURNAL OF ALGEBRA, 2021, 586 : 99 - 139
  • [35] Dual coalgebras of algebras over commutative rings
    Abuhlail, JY
    Gómez-Torrecillas, J
    Wisbauer, R
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 153 (02) : 107 - 120
  • [36] Vertex and region colourings of planar idempotent divisor graphs of commutative rings
    Authman M.N.
    Mohammad H.Q.
    Shuker N.H.
    Iraqi Journal for Computer Science and Mathematics, 2022, 3 (01): : 71 - 82
  • [37] SEPARABLE ALTERNATIVE ALGEBRAS OVER COMMUTATIVE RINGS
    BIX, R
    JOURNAL OF ALGEBRA, 1985, 92 (01) : 81 - 103
  • [38] ASSOCIATIVITY AND COMMUTATIVITY OF ALGEBRAS OVER COMMUTATIVE RINGS
    KOH, K
    LUH, J
    PUTCHA, MS
    PACIFIC JOURNAL OF MATHEMATICS, 1976, 63 (02) : 423 - 430
  • [40] ON LEAVITT PATH ALGEBRAS OVER COMMUTATIVE RINGS
    Kanwar, Pramod
    Khatkar, Meenu
    Sharma, R. K.
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2019, 26 : 191 - 203