Vertex and region colourings of planar idempotent divisor graphs of commutative rings

被引:0
|
作者
Authman M.N. [1 ]
Mohammad H.Q. [1 ]
Shuker N.H. [1 ]
机构
[1] Department of Mathematics, College of Computer Science and Mathematics, University of Mosul, Mosul
关键词
idempotent divisor graph; idempotent elements; planar graph; Zero divisor graph;
D O I
10.52866/ijcsm.2022.01.01.008
中图分类号
学科分类号
摘要
The idempotent divisor graph of a commutative ring R is a graph with vertices set in R * = R-{0}, and any distinct vertices x and y are adjacent if and only if x.y = e. For some non-unit idempotent element e2 = e ∈ R, it is denoted by Π(R). The purpose of this work is to use some properties of ring theory and graph theory to determine the clique number, the chromatic number and the region chromatic number for each planar idempotent divisor graph of the commutative rings. furthermore, we show that the clique number is equal to the chromatic number for any planar idempotent divisor graph. Results indicate that when Fq and Fαp are fields of orders q and pα, respectively, where q=2 or 3, p is a prime number and is a positive integer. If ring R ∼= Fq ×Fpα, then χ(Π(R)) = ω(Π(R)) = χ∗(Π(R)) = 3. © 2022 Iraqi Journal for Computer Science and Mathematics. All rights reserved.
引用
收藏
页码:71 / 82
页数:11
相关论文
共 50 条
  • [1] On vertex connectivity of zero-divisor graphs of finite commutative rings
    Chattopadhyay, Sriparna
    Patra, Kamal Lochan
    Sahoo, Binod Kumar
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (04) : 955 - 969
  • [2] The idempotent-divisor graphs of a commutative ring
    Kimball, Candace F.
    LaGrange, John D.
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (09) : 3899 - 3912
  • [3] OPTICAL ART OF A PLANAR IDEMPOTENT DIVISOR GRAPH OF COMMUTATIVE RING
    Authman, Mohammed N.
    Mohammad, Husam Q.
    Shuker, Nazar H.
    JOURNAL OF SCIENCE AND ARTS, 2024, (01): : 123 - 132
  • [4] Planar, Outerplanar, and Toroidal Graphs of the Generalized Zero-Divisor Graph of Commutative Rings
    Alanazi, Abdulaziz M.
    Nazim, Mohd
    Rehman, Nadeem Ur
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [5] ON THE COZERO-DIVISOR GRAPHS AND COMAXIMAL GRAPHS OF COMMUTATIVE RINGS
    Afkhami, Mojgan
    Khashyarmanesh, Kazem
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (03)
  • [6] COMMUTATIVE RINGS WITH TOROIDAL ZERO-DIVISOR GRAPHS
    Chiang-Hsieh, Hung-Jen
    Smith, Neal O.
    Wang, Hsin-Ju
    HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (01): : 1 - 31
  • [7] A generalization of zero divisor graphs associated to commutative rings
    Afkhami, M.
    Erfanian, A.
    Khashyarmanesh, K.
    Moosavi, N. Vaez
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (01):
  • [8] ZERO DIVISOR GRAPHS FOR MODULES OVER COMMUTATIVE RINGS
    Behboodi, M.
    JOURNAL OF COMMUTATIVE ALGEBRA, 2012, 4 (02) : 175 - 197
  • [9] ON ZERO DIVISOR GRAPHS OF FINITE COMMUTATIVE LOCAL RINGS
    Zhuravlev, Evgeniy Vladimirovich
    Monastyreva, Anna Sergeevna
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 465 - 480
  • [10] Irreducible divisor graphs in commutative rings with zero divisors
    Axtell, M.
    Stickles, J.
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (05) : 1883 - 1893