Vertex and region colourings of planar idempotent divisor graphs of commutative rings

被引:0
|
作者
Authman M.N. [1 ]
Mohammad H.Q. [1 ]
Shuker N.H. [1 ]
机构
[1] Department of Mathematics, College of Computer Science and Mathematics, University of Mosul, Mosul
关键词
idempotent divisor graph; idempotent elements; planar graph; Zero divisor graph;
D O I
10.52866/ijcsm.2022.01.01.008
中图分类号
学科分类号
摘要
The idempotent divisor graph of a commutative ring R is a graph with vertices set in R * = R-{0}, and any distinct vertices x and y are adjacent if and only if x.y = e. For some non-unit idempotent element e2 = e ∈ R, it is denoted by Π(R). The purpose of this work is to use some properties of ring theory and graph theory to determine the clique number, the chromatic number and the region chromatic number for each planar idempotent divisor graph of the commutative rings. furthermore, we show that the clique number is equal to the chromatic number for any planar idempotent divisor graph. Results indicate that when Fq and Fαp are fields of orders q and pα, respectively, where q=2 or 3, p is a prime number and is a positive integer. If ring R ∼= Fq ×Fpα, then χ(Π(R)) = ω(Π(R)) = χ∗(Π(R)) = 3. © 2022 Iraqi Journal for Computer Science and Mathematics. All rights reserved.
引用
收藏
页码:71 / 82
页数:11
相关论文
共 50 条
  • [41] ON COMPRESSED ZERO-DIVISOR GRAPHS OF FINITE COMMUTATIVE LOCAL RINGS
    Zhuravlev, E., V
    Filina, O. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2021, 18 (02): : 1531 - 1555
  • [42] Quasi-Zero-Divisor Graphs of Non-Commutative Rings
    Shouxiang ZHAO
    Jizhu NAN
    Gaohua TANG
    JournalofMathematicalResearchwithApplications, 2017, 37 (02) : 137 - 147
  • [43] Metric and upper dimension of zero divisor graphs associated to commutative rings
    Pirzada, S.
    Aijaz, M.
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2020, 12 (01) : 84 - 101
  • [44] The i-extended zero-divisor graphs of commutative rings
    Bennis, Driss
    El Alaoui, Brahim
    Fahid, Brahim
    Farnik, Michal
    L'hamri, Raja
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (11) : 4661 - 4678
  • [45] On the Non-Zero Divisor Graphs of Some Finite Commutative Rings
    Zai, N. A. F. O.
    Sarmin, N. H.
    Khasraw, S. M. S.
    Gambo, I.
    Zaid, N.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (02): : 105 - 112
  • [46] Independent domination polynomial of zero-divisor graphs of commutative rings
    Gursoy, Necla Kircali
    Ulker, Alper
    Gursoy, Arif
    SOFT COMPUTING, 2022,
  • [47] On divisor topology of commutative rings
    Yigit, Ugur
    Koc, Suat
    RICERCHE DI MATEMATICA, 2025,
  • [48] NILPOTENT FINITE RINGS WITH PLANAR ZERO-DIVISOR GRAPHS
    KuZ'Mina, A. S.
    Maltsev, Yu. N.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2008, 1 (04) : 565 - 574
  • [49] On zero-divisor graphs of skew polynomial rings over non-commutative rings
    Hashemi, E.
    Amirjan, R.
    Alhevaz, A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (03)
  • [50] On symmetries of edge and vertex colourings of graphs
    Lehner, Florian
    Smith, Simon M.
    DISCRETE MATHEMATICS, 2020, 343 (09)